A large volume of food is being wasted every year, while the pulp and paper industry also generate a large amount of solid wastes on a daily basis, causing environmental challenges around the world. Dry anaerobic digestion (AD) of these solid wastes is a cost-effective method for proper management. However, dry digestion of these waste streams has been restricted due to their complex structure, the presence of possible inhibitors and inappropriate operating conditions. In light of this fact, dry digestion of food waste (FW) and paper wastes (PW) was conducted at different total solid (TS) concentrations of reactor mixtures of 14%, 16%, 18% and 20% TS, corresponding to substrate to inoculum (S/I) ratio of 0.5 and 1; investigating the optimum operating conditions for effective dry digestion of these complex wastes. The highest methane yields of 402 NmlCH(4)/gVS and 229 NmlCH(4)/gVS were obtained from digestion of FW and PW, respectively at 14%TS corresponding to an S/I ratio of 0.5. Increasing the S/I ratio from 0.5 to 1 and thereby having a TS content of 20% in the reactor mixtures was unfavorable to the digestion of both substrates.