Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
New Solvent for Polyamide 66 and Its Use for Preparing a Single-Polymer Composite-Coated Fabric
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0002-1404-9134
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0002-6596-8069
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0002-7377-0765
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0003-4887-2433
2018 (English)In: International Journal of Polymer Science, ISSN 1687-9422, E-ISSN 1687-9430Article in journal (Refereed) Published
Abstract [en]

Polyamides (PAs) are one of the most important engineering polymers; however, the difficulty in dissolving them hinders their applications. Formic acid (FA) is the most common solvent for PAs, but it has industrial limitations. In this contribution, we proposed a new solvent system for PAs by replacing a portion of the FA with urea and calcium chloride (FAUCa). Urea imparts the hydrogen bonding and calcium ion from the calcium chloride, as a Lewis acid was added to the system to compensate for the pH decrease due to the addition of urea. The results showed that the proposed solvent (FAUCa) could readily dissolve PAs, resulting in a less decrease in the mechanical properties during the dissolution. The composite prepared using the FAUCa has almost the same properties as the one prepared using the FA solution. The solution was applied on a polyamide 66 fabric to make an all-polyamide composite-coated fabric, which then was characterized. The FAUCa solution had a higher viscosity than the one prepared using the neat FA solvent, which can be an advantage in the applications which need higher viscosity like preparing the all-polyamide composite-coated fabric. A more viscous solution makes a denser coating which will increase the water /gas tightness. In conclusion, using the FAUCa solvent has two merits: (1) replacement of 40% of the FA with less harmful and environmentally friendly chemicals and (2) enabling for the preparation of more viscous solutions, which makes a denser coating.

Place, publisher, year, edition, pages
2018.
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-21557DOI: 10.1155/2018/6235165ISI: 000448619700001Scopus ID: 2-s2.0-85062636745OAI: oai:DiVA.org:hb-21557DiVA, id: diva2:1340797
Available from: 2019-08-06 Created: 2019-08-06 Last updated: 2020-01-08
In thesis
1. Material development of a textile bioreactor: All-polyamide composite for the construction of bioreactors
Open this publication in new window or tab >>Material development of a textile bioreactor: All-polyamide composite for the construction of bioreactors
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Bioreactors are manufactured from stainless/carbon steel, concrete, glass, etc., which are costly and time-consuming to install. Recently, several research studies have been initiated to find cost-efficient materials for constructing bioreactors, one of which is coated textiles. Polyvinyl chloride (PVC)-coated polyester textile (PVCT) has been used for this purpose to make bioreactors more cost-effective and easier to install. In this thesis, the thermal insulation property of PVCT was improved, that enhances the energy efficiency of the process carried out within the bioreactor. However, recycling PVCT is challenging, as it is a mixture of PVC, polyester fabric, a plasticizer for the PVC, chemical linkers, and other processing-aid additives. A possible solution to address these issues is to use a coated textile composed of a single material. The polyester fabric can be replaced with a better performing fabric, such as polyamide, that generally has a longer lifetime as well as higher mechanical stability and is light-weight. A facile method was introduced to make a same-polymer coated textiles composite out of polyamide through the partial dissolution of the fabric’s surface followed by coagulation. The all-polyamide composite coated textiles (APCT) is mechanically stronger and more thermally stable than the PVCT as well as having less weight. Additionally, the APCT is fully recyclable as it contains only a single component. This property can be beneficial for the recyclability of the material. The APCT can be used in the construction of textile bioreactors as well as other applications that require gas-/water-tightness and flexibility at the same time. In addition, a new solvent for polyamide was proposed which can be used for the preparation of the APCT. A computer-assisted theoretical solvent selection method based on the Hansen solubility parameters was also introduced. The findings of this research can increase the economic efficiency of the biofuel production process by decreasing the initial investment. From a technical perspective, the methods introduced in this thesis can encourage researchers in related fields to produce same-polymer composites and find/replace solvent(s) in a more efficient way.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2019
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 94
Keywords
textile bioreactor, biofuel, coated fabric; all-polyamide composite, polyvinyl chloride (PVC), solvent replacement, Hansen solubility parameters (HSPs)
National Category
Materials Chemistry
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-15939 (URN)978-91-88838-28-5 (ISBN)978-91-88838-29-2 (ISBN)
Public defence
2020-01-31, E310, Allégatan 1, Borås, 10:00 (English)
Opponent
Available from: 2020-01-08 Created: 2019-04-02 Last updated: 2020-02-19Bibliographically approved

Open Access in DiVA

fulltext(3956 kB)125 downloads
File information
File name FULLTEXT01.pdfFile size 3956 kBChecksum SHA-512
c609d316e4b82884019f933cff864b3fdacd3ab6963a3919754f97f993b3e0dfabfff61f4ec0a07111e878cbaf3130a1ebc53f417f9198422e375b7690610cc7
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Jabbari, MostafaSkrifvars, MikaelÅkesson, DanTaherzadeh, Mohammad J

Search in DiVA

By author/editor
Jabbari, MostafaSkrifvars, MikaelÅkesson, DanTaherzadeh, Mohammad J
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
International Journal of Polymer Science
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 126 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 779 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf