In this study, conductive tracks are integrated onto textiles through Fused Deposition Modelling (FDM) process and the correlation between the FDM process parameters, the textile properties (the porosity and the structure for instance) and the electrical resistance of the composites is investigated. Many researchers have studied the electrical conductivity of polymers composites using incorporation of conductive fillers such as carbon black or carbon nanotube–polymer composites and the effect of the 3D printing process parameters, such as extruder temperature, on the electrical properties [1–7]. However, in this paper, in addition to study and understand the electrical properties of these conductive materials deposited onto textiles, they are maximized to guarantee the use of the textile composites in smart textiles field.Findings are very promising and important in the development of functionalized textiles as they demonstrate the feasibility of enhancing the electrical conductivity of textile composite materials through theoretical models based on the experimental data.