Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Semi-continuous reverse membrane bioreactor in two-stage anaerobic digestion of citruswaste
Department of Food and Agricultural Product Technology, Universitas Gadjah Mada.
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0002-7387-2358
Department of Food and Agricultural Product Technology, Universitas Gadjah Mada.
Department of Food and Agricultural Product Technology, Universitas Gadjah Mada.
Show others and affiliations
2018 (English)In: Materials, E-ISSN 1996-1944, Vol. 11, no 8, article id 1341Article in journal (Refereed) Published
Sustainable development
According to the author(s), the content of this publication falls within the area of sustainable development.
Abstract [en]

Abstract

The presence of an antimicrobial compound called D-Limonene in citrus waste inhibits methane production from such waste in anaerobic digestion. In this work, a two-stage anaerobic digestion method is developed using reverse membrane bioreactors (rMBRs) containing cells encased in hydrophilic membranes. The purpose of encasement is to retain a high cell concentration inside the bioreactor. The effectiveness of rMBRs in reducing cell washout is evaluated. Three different system configurations, comprising rMBRs, freely suspended cells (FCs), and a combination of both (abbreviated to rMBR–FCs), are incubated at three different organic loading rates (OLRs) each, namely 0.6, 1.2, and 3.6 g COD/(L cycle). Incubation lasts for eight feeding cycles at 55 °C. Methane yield and biogas composition results show that rMBRs perform better than rMBR–FCs and FCs at all three OLRs. Volatile fatty acid profiles and H2 production show that the reactors are working properly and no upset occurs. Additionally, a short digestion time of 4 days can be achieved using the rMBR configuration in this study.

Place, publisher, year, edition, pages
MDPI AG , 2018. Vol. 11, no 8, article id 1341
Keywords [en]
anaerobic digestion, biogas, membrane bioreactor, semi-continuous, citrus waste, two-stage
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-15627DOI: 10.3390/ma11081341ISI: 000444112800078Scopus ID: 2-s2.0-85051138755OAI: oai:DiVA.org:hb-15627DiVA, id: diva2:1276094
Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2024-07-04
In thesis
1. Methane and Volatile Fatty Acids Production from Toxic Substrate
Open this publication in new window or tab >>Methane and Volatile Fatty Acids Production from Toxic Substrate
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Challenges caused by climate change and global warming have created a demand for improvements in resource recovery and the promotion of a circular economy. Waste management is one such challenge for which more recycling options are required for producing materials and energy sources from wastes. Toxic organic waste such as fruit waste has been conventionally disposed into landfills; however, anaerobic digestion can be performed to produce biogas or volatile fatty acids (VFAs) from these wastes.The main objective of this research was to develop an anaerobic digestion method for patchouli oil distillery waste and citrus processing residuals for biogas and VFA production using a membrane bioreactor and two-stage digestion system. To this end, a reverse membrane bioreactor with a membrane-encased mixed culture was used for both one-stage and two-stage digestion. The membrane encasement was used to protect the microorganisms from toxic compounds (e.g., D-limonene or patchouli alcohol). The membrane improved the methane yield of patchouli oil distillery waste (73%) and filtrate from citrus waste digestate from the acidification reactor (50%). Two-stage digestion of citrus waste was improved by performing effluent recirculation from the second-stage reactor into first-stage reactor (79% increase in methane yield).In addition to biogas, VFAs, as intermediate products of anaerobic digestion, are considered as valuable products. A two-stage digestion experiment showed that citrus waste can also be converted into VFAs. However, several factors influencing biogas and VFA production differed between the two processes. Batch experiments of anaerobic digestion were performed to investigate important factors affecting VFA production from citrus waste and food waste (as an example of a non-toxic substrate). The results showed that pH, moderate substrate loading, and inoculum adaptation were significant factors affecting VFA production, whereas additions of a methanogen inhibitor and the presence of oxygen did not significantly affect the VFA yield. At high citrus waste loading, D-limonene loading was also high and negatively impacted the VFA yield.To reduce product inhibition in the anaerobic digestion of citrus waste, a tubular membrane as a cross-flow filtration device was used for downstream processing of VFAs. Continuous extraction of VFAs from the reactor improved the VFA yield by two-fold compared with the reactor in which the membrane was not used. The cross-flow filtration allows the system to remain stable during continuous cake-layer removal, as the highest trans-membrane pressure detected was below 67.5 mbar.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2020
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 104
Keywords
toxic substrate, methane, volatile fatty acid, anaerobic digestion, membrane bioreactor, factor, tubular membrane, two-stage digestion
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-23037 (URN)978-91-88838-67-4 (ISBN)978-91-88838-68-1 (ISBN)
Available from: 2020-10-08 Created: 2020-03-17 Last updated: 2020-12-18Bibliographically approved

Open Access in DiVA

fulltext(4800 kB)174 downloads
File information
File name FULLTEXT01.pdfFile size 4800 kBChecksum SHA-512
922ea06e90bea491e067c3414f584be1df8aa7ec14d3eb6bc0bad3b8a6c9f78c68b393591202062b59a6cf0220a3424d89e425f149dd65b26541e1d5a2586477
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Lukitawesa, LukitawesaTaherzadeh, Mohammad J

Search in DiVA

By author/editor
Lukitawesa, LukitawesaTaherzadeh, Mohammad J
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Materials
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 175 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf