Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Control systems for improvement of cone crusher yield and operation
Chalmers University of Technology.
Chalmers University of Technology.
Chalmers University of Technology.ORCID iD: 0000-0002-3283-067x
Chalmers University of Technology.
2014 (English)In: Proceedings of Comminution '14, 2014Conference paper, Oral presentation with published abstract (Refereed)
Sustainable development
In my opinion, the content of this publication falls within the area of sustainable development.
Abstract [en]

Gyratory and cone crushers are regaining interest and are becoming more frequently used in order to create more energy efficient comminution circuits. A typical example is found in coarse comminution circuits were HPGRs are used as a first milling stage. In this case the preparation of a suitable feed with a well-defined width of the particle size distribution and a controlled top size are of high importance. In turn, this emphasizes the importance of a stable and controlled operation of the preceding crushing stages. Control systems for cone and gyratory crushers were first introduced during the early 60ths. The common opinion is that if these systems are able to compensate for the wear of the crushing liners the production yield can be increased with 20-25%. Over the years these types of systems have been widely used but the theory behind the principles have not been thoroughly scientifically scrutinized and presented. Of special interest is the capability to protect the crushers from long term overloading commonly defined as fatigue. With developments in electronics and plant control the crusher control systems have become more refined over the years. Though, there are sometimes conflicting interests in the control strategies between process requirements and crusher protection. In the paper an overview of the challenges, opportunities and existing control systems for cone and gyratory crushers is presented. A requirement specification for a system that is possible to fully integrate into modern plant control systems is outlined.

Place, publisher, year, edition, pages
2014.
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:hb:diva-14959OAI: oai:DiVA.org:hb-14959DiVA, id: diva2:1237838
Conference
Comminution '14, Cape Town, April 7-10, 2014
Available from: 2018-08-10 Created: 2018-08-10 Last updated: 2018-08-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Abstract

Authority records BETA

Bengtsson, Magnus

Search in DiVA

By author/editor
Bengtsson, Magnus
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf