Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of throw and compression ratio on particle shape - A full scale investigation and laboratory tests
Chalmers University of Technology.ORCID iD: 0000-0002-3283-067x
Chalmers University of Technology.
Chalmers University of Technology.
2010 (English)In: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 23, no 7, p. 549-557Article in journal (Refereed) Published
Abstract [en]

The machine parameters of throw and eccentric speed affect the particle shape. Their influence on particle shape is however not fully investigated. Preliminary tests on a full-scale crusher had shown certain trends in regard to the flakiness of the product (Fig. 1). These effects were investigated in detail by means of a series of piston-and-die tests, followed by modelling of the laboratory data. An empirical model of a crusher was developed which links the product size distribution and the shape of the particles to operating parameters. The simulator produced trends which were similar to the full-scale data. The throw and eccentric speed affects the utilised compression acting on the rock/rock-bed. This paper presents a method suitable for characterizing the compressive breakage behaviour of rock materials during form conditioned compression. In this method, size reduction is primarily related to geometric compression. The method provides a complete description of the breakage characteristics of the tested rock material when compressive crushing is employed. The results can be used for modelling and simulation purposes in the design of crushing equipment or crushing plants. A novel approach to optimise form conditioned crushing in order to achieve an acceptable particle size and shape is presented. The paper concludes that inter-particle breakage in combination with high compression ratio is beneficial for the particle shape. The full scale tests support this since an increase in throw improves particle shape for particles subjected to inter-particle breakage. © 2009 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2010. Vol. 23, no 7, p. 549-557
Keywords [en]
Rock material, Breakage characterization, Size distribution, Particle shape, Modelling, Simulation, Crusher
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:hb:diva-14961DOI: 10.1016/j.mineng.2009.12.009OAI: oai:DiVA.org:hb-14961DiVA, id: diva2:1237836
Available from: 2018-08-10 Created: 2018-08-10 Last updated: 2018-08-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://research.chalmers.se/publication/122652

Authority records BETA

Bengtsson, Magnus

Search in DiVA

By author/editor
Bengtsson, Magnus
In the same journal
Minerals Engineering
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf