Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rekommendationsmotor: med fokus inom E-lärande
University of Borås, Faculty of Librarianship, Information, Education and IT.
University of Borås, Faculty of Librarianship, Information, Education and IT.
2018 (Swedish)Independent thesis Basic level (degree of Bachelor), 15 credits / 22,5 HE creditsStudent thesisAlternative title
Recommendation engine: focus within E-learning (English)
Abstract [sv]

Studier kring rekommendationsmotorer är ett område med större signifikans i en växande digital verklighet. Mängden med information ökar och med mer information blir det svårare att hitta det som för individen är av intresse. Vissa specifika områden med tillämpning av rekommendationsmotorer är mer välstuderade än andra, domäner som sysslar med försäljning hamnar i den mer studerade kategorin. Andra domäner som är i behov av rekommendationsmotorer, som inte är lika välstuderade är verksamheter som tillhandahåller möjlighet för lärande via internet. En av dessa verksamheter heter Nomp och erbjuder ett läroverktyg för barn och ungdomar inom matematik. Målet med denna studie är därför att implementera en rekommendationsmotor inom denna mindre utforskade domän. Målet är även att undersöka nyttan med rekommendationsmotorn för applikationens användare. Studien har baserats på ett ramverk inom designforskning, vilket inkluderar olika typer av experiment samt en undersökning. Resultaten från dessa aktiviteter utgjorde empirin för den analys som sedan genomfördes. Resultatet ger visst stöd för att det är möjligt att implementera en rekommendationsmotor för denna domän. De visade däremot inget entydigt svar i vilken omfattning dess nytta har för slutanvändaren. Studiens målsättning uppfylldes till viss del, däremot kunde nyttan för slutanvändaren utforskats i större omfattning. Förhoppningen är att denna studie ska ha effekter i form av praktiska konsekvenser, där användare kan spendera mindre tid på att leta efter information som kan vara till nytta. Det som skiljer sig i denna studie från tidigare liknande studier är att rekommendationsmotorn är implementerad för att passa en verklig verksamhet. I jämförelse med andra studier är denna studie även baserad på data direkt från verksamhetens användare. Vissa liknande artefakter har blivit implementerade, men då är de ofta mer generella eller har använt sig av data som inte är relevant för domänen. Det är också vanligare att liknande rekommendationsmotorer använder sig av direkt användarfeedback för att göra rekommendationer, vilket inte används i denna studie.

Abstract [en]

Studies regarding recommendation engines have gained greater importance in our reality of the digital community. With regards to the continuously growing amount of digital information it has become harder to find information that’s of importance to the individual. Some specific domains with enforcement of recommendation engines are more studied than others, domains that distribute services or items usually end up in this category. Other domains that are in need of recommendation engines, that’s not as well explored is business which enables learning through the internet. One of these business is called Nomp and provides a learning tool for kids and young teenagers in mathematics. The goal with this study is therefore to implement a recommendation engine for a business that is within this lesser explored domain. The goal is also to explore the advantages a recommendation engine would provide for its users. The study is based on a framework within design science research, which included various kinds of experiments and a survey. The results from these activities represented the empirics for the analysis that was conducted. The results show some signs that it’s possible to implement an artifact for this domain. However, it does not clearly show to what extent it’s valuable for the end user. For some part, the objectives for this study was met. Although, the advantages for the users could have been explored in greater depth. The overall prospects by conducting this study is that it will have some practical consequences, that the user can or will spend lesser time to search for important information. Differences between this study and other similar studies is that the recommendation engine is implemented to fit the needs of a real business. Also, compared to others, this study is based on data collected directly from the end users. Some similar systems have been implemented but the artefact is often more general or might have used data that’s not relevant the domain. It’s also more common that similar recommendation engines are using direct user feedback to make recommendations, which is not used in this study.

Place, publisher, year, edition, pages
2018.
Keywords [en]
Recommendation engine, implicit data, collaborative filtering, E-learning, recommendations
Keywords [sv]
Rekommendationsmotor, implicita data, samarbetsfiltrering, E-lärande, rekommendationer
National Category
Information Systems
Identifiers
URN: urn:nbn:se:hb:diva-13814OAI: oai:DiVA.org:hb-13814DiVA, id: diva2:1190463
Subject / course
Informatics
Supervisors
Examiners
Available from: 2018-03-20 Created: 2018-03-14 Last updated: 2018-05-31Bibliographically approved

Open Access in DiVA

fulltext(1928 kB)166 downloads
File information
File name FULLTEXT01.pdfFile size 1928 kBChecksum SHA-512
be581b5421a548accf172f94cf4be272ff4755a438269559e61afd5a2f2eb151614b1ee6813d3ed1e672f5597daa8b5febd4d069386b8ece5bfcdc0f193e10e4
Type fulltextMimetype application/pdf

By organisation
Faculty of Librarianship, Information, Education and IT
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 166 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 532 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf