Biogas reactors can be utilized more efficiently when straw and food waste are digested together instead of separately. In the present study, straw in the form of pellets and briquettes has been used in experiments and calculations. Co-digestion of different substrates can give a more optimal substrate composition and a more efficient utilization of available digester volume. The pelleting and briquetting process has been shown to be an adequate pretreatment method of the straw. Digesting food waste and straw together showed synergistic effects with improved degradation of the food waste as well as a higher total volumetric methane production as compared to when food waste was used as the sole substrate. Energy produced through increased biogas production was higher than the energy needed for the pelleting and briquetting process. The positive effect in regard to gas production was mainly seen for the straw pellets, results supported by both chemical and microbiological analysis. These effects were observed in both mesophilic and thermophilic conditions. In conclusion, this study illustrates that straw is a suitable co-digestion substrate to food waste and can be used to improve gas yields as well as for more efficient utilization of the digester volume. These results show the biogas potential of straw, today not yet used as a substrate to a large extent.