Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Textile bioreactor a possible solution to reducing ethanol fermentation cost
University of Borås, Faculty of Textiles, Engineering and Business. (Biotechnology)ORCID iD: 0000-0003-3488-4003
University of Borås, Faculty of Textiles, Engineering and Business. (Biotechnology)
University of Borås, Faculty of Textiles, Engineering and Business. (Biotechnology)
2016 (English)In: Bioprocess and Bio Therapeutics, 2016Conference paper, Oral presentation with published abstract (Refereed)
Sustainable development
The content falls within the scope of Sustainable Development
Abstract [en]

There is growing concern on bioethanol application as a transportation fuel because of the current low price of crude oil. To reduce the ethanol fermentation cost, how ethanol bioreactors can be designed to offer process flexibility, reduced investment cost, optimal productivity and more than 1 h-1 dilution rates without washout was investigated. A bioreactor made with textile as its backbone material of construction was designed to anaerobically utilize flocculating yeast for ethanol production without using mixing devices like aerators, spargers and stirrers. A mixing system was developed that used the flocculating yeast in the form of a fluidized bed in the bioreactor, and the conditions needed to maintain the fluidized bed in the bioreactor were determined. Recirculation flow rate and utilization of the mixing system were used as process variables for fermentation experiments. It was found that it is possible to use the fluidized mixing system in the bioreactor at dilution rate of 1.2 h‑1 without washout. Mass transfer limitations associated with mixing when using flocculating yeast was resolved even at low recirculation mixing rate of 0.0016 VVM. Specific ethanol productivity of 0.29 ± 0.01 g-ethanol/g-biomass/h with complete sucrose consumption was attained. Using the bioreactor with flocculating yeast can reduce the fermentation investment cost of a 100,000 m3/y ethanol plant by 37 %. 

Place, publisher, year, edition, pages
2016.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hb:diva-11684DOI: 10.4172/2155-9821.C1.009OAI: oai:DiVA.org:hb-11684DiVA, id: diva2:1062912
Conference
4th International Conference on Bioprocess and Bio Therapeutics, Houston, October 20-21, 2016
Available from: 2017-01-09 Created: 2017-01-09 Last updated: 2017-01-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Osadolor, Osagie AlexLennartsson, PatrikTaherzadeh, Mohammad

Search in DiVA

By author/editor
Osadolor, Osagie AlexLennartsson, PatrikTaherzadeh, Mohammad
By organisation
Faculty of Textiles, Engineering and Business
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 537 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf