Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data-driven estimation of blood pressure using photoplethysmographic signals
Tsinghua University.
University of Borås, Faculty of Librarianship, Information, Education and IT.ORCID iD: 0000-0002-1539-8256
2016 (English)In: Proceedings of EMBC-16, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2016Conference paper, Published paper (Refereed)
Abstract [en]

Noninvasive measurement of blood pressure by optical methods receives considerable interest, but the complexity of the measurement and the difficulty of adjusting parameters restrict applications. We develop a method for estimating the systolic and diastolic blood pressure using a single-point optical recording of a photoplethysmographic (PPG) signal. The estimation is data-driven, we use automated machine learning algorithms instead of mathematical models. Combining supervised learning with a discrete wavelet transform, the method is insensitive to minor irregularities in the PPG waveform, hence both pulse oximeters and smartphone cameras can record the signal. We evaluate the accuracy of the estimation on 78 samples from 65 subjects (40 male, 25 female, age 29±7) with no history of cardiovascular disease. The estimate for systolic blood pressure has a mean error 4.9±4.9 mm Hg, and 4.3±3.7 mm Hg for diastolic blood pressure when using the oximeter-obtained PPG. The same values are 5.1±4.3 mm Hg and 4.6±4.3 mm Hg when using the phone-obtained PPG, comparing with A&D UA-767PBT result as gold standard. The simplicity of the method encourages ambulatory measurement, and given the ease of sharing the measured data, we expect a shift to data-oriented approaches deriving insight from ubiquitous mobile devices that will yield more accurate machine learning models in monitoring blood pressure.

Place, publisher, year, edition, pages
2016.
Keywords [en]
Big Data, Blood Pressure, Discrete Wavelet Transform, Machine Learning, Mobile Health
National Category
Other Computer and Information Science
Identifiers
URN: urn:nbn:se:hb:diva-11649DOI: 10.1109/embc.2016.7590814Scopus ID: 2-s2.0-85009134603ISBN: 9781457702204 (electronic)OAI: oai:DiVA.org:hb-11649DiVA, id: diva2:1062325
Conference
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, August 17-20, 2016
Available from: 2017-01-05 Created: 2017-01-05 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(152 kB)313 downloads
File information
File name FULLTEXT01.pdfFile size 152 kBChecksum SHA-512
23dcc56c1a4f436198194814b73ea0cc84a539b88870212dbbb9aa9568365dd8c64753965c4b5b1fc35b60d3642fd37e6fdcbc13a22ef8622f2e623003fb4f27
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopushttp://dx.doi.org/10.1109/EMBC.2016.7590814

Authority records BETA

Wittek, Peter

Search in DiVA

By author/editor
Wittek, Peter
By organisation
Faculty of Librarianship, Information, Education and IT
Other Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 313 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 210 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf