Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Light induced textile substrate with switchable and reversible wettability: Development of a switchability and reversibility effect between hydrophobic and hydrophilic states on a polyamide-66 textile substrate
University of Borås, Faculty of Textiles, Engineering and Business.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Biomimicry means literally ‘imitation of life’ and is providing sustainable solutions for challenges that are occurring in the human lives. To date, the biomimic research reports that wettability in nature, e.g. self-cleaning effect on a lotus leaf and a striking water strider’s leg, is related to the cooperation between the chemical composition and the topography of the surface. Moreover, this study is developing a textile substrate that goes one step further than biomimic, called ‘Biomimicking beyond nature’. The focus of this study is establishing a 100% polyamide-66 textile substrate that is switchable and reversible between hydrophobic and hydrophilic states under stimulation of UV. In this study the behaviour of a polyamide-66 textile substrate, coated with three individual photoresponsive materials (azobenzene, titanium dioxide and zinc oxide), was investigated, under stimulation of 24 hours UV and one-week of storage period in dark conditions. Silicone was added to enhance the hydrophobicity of a titanium dioxide coated substrate. A switchability effect was detected, but no reversibility effect could be observed. The only organic photoresponsive material, azobenzene, obtained no significant results to conclude that an alternation between hydrophobic and hydrophilic was even present after 24 hours of UV radiation. However, azobenzene obtained more promising results on a 100% polyester textile substrate. Even though, the H0 cannot be rejected for all three individual photoresponsive materials, the zinc oxide coated polyamide-66 substrate, did exhibit the strongest results in switchability and reversibility. Based on the characterization measurements, a switchability effect from a hydrophobic surface (ca. 120°) to a hydrophilic surface (0°) can be observed after 24 hours of UV radiation. Moreover, a reversibility effect was only reported on a zinc oxide coated polyamide-66 substrate. The substrate partially reversed back to its original state with ca. 50%. Fabricating intelligent substrates could enhance many challenges confiscating today’s life. For instance, the development of smarts membranes or microfluidic switches, that alternate their wettability upon light radiation, could improve the exhausting manual labour in watering the harvest good in the agricultural industry. Therefore, it is of great importance that further research will be conducted upon the photoresponsive material, zinc oxide, in order to achieve more stable results. This study can be added to the relatively small area of knowledge around switchability phenomenon on textile substrates and can even been reported as one of the first attempts on developing a textile substrate with switchable and reversible characteristics, by use of a facile and possibly industrialized method.

Place, publisher, year, edition, pages
2016. , p. 66
Keywords [en]
Polyamide-66, Titanium dioxide, Silicone, Zinc oxide, Azobenzene, Switchability, Reversibility, Hydrophobic, Hydrophilic
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hb:diva-10834OAI: oai:DiVA.org:hb-10834DiVA, id: diva2:1017184
Subject / course
Textilteknologi
Uppsok
Technology
Available from: 2016-10-18 Created: 2016-10-04 Last updated: 2016-10-18Bibliographically approved

Open Access in DiVA

fulltext(2410 kB)545 downloads
File information
File name FULLTEXT01.pdfFile size 2410 kBChecksum SHA-512
07956c177d0639251db98434f4cd69d7d1424962b10666a22e4f1fa7a722c32d4aba73387ab319d69d03f971b8e7159e239afaba96e69505b0fc646af7213edc
Type fulltextMimetype application/pdf

By organisation
Faculty of Textiles, Engineering and Business
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 547 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 594 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf