Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Negative thermal expansion of poly(vinylidene fluoride) and polyethylene tie molecules: A molecular dynamics study
University of Cambridge.
University of Borås, Faculty of Textiles, Engineering and Business.
2016 (English)In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 54, 2223-2232 p.Article in journal (Refereed) Published
Abstract [en]

The mechanism of thermal actuation for poly(vinylidene fluoride) (PVDF) and polyethylene (PE) tie molecules has been investigated using molecular dynamics simulations. Tie molecules are found in semicrystalline polymers and are polymer chains that link two (or more) crystalline lamellae, allowing for the transfer of force between these regions. A novel simulation technique has been developed to enable measurement of changes in the tie molecule length upon heating. We investigate the dependence of the percentage actuation observed upon heating, on the external applied force that stretches the tie molecules, the temperature range used for heating as well as the length and the number of tie molecules. Two molecular level mechanisms for actuation are identified. An entropically driven mechanism occurs at low applied forces and is applicable to all flexible polymers. A second mechanism due to conformational changes is observed for PVDF but not for PE at intermediate applied forces.

Place, publisher, year, edition, pages
2016. Vol. 54, 2223-2232 p.
Keyword [en]
poly(vinylidene fluoride), polyethylene, molecular dynamics, simulation, actuators, tie molecules, semicrystalline
National Category
Polymer Chemistry
Research subject
Textiles and Fashion (General)
Identifiers
URN: urn:nbn:se:hb:diva-10819DOI: 10.1002/polb.24131ISI: 000383620400008ScopusID: 84988019174OAI: oai:DiVA.org:hb-10819DiVA: diva2:1010260
Available from: 2016-10-03 Created: 2016-10-03 Last updated: 2016-12-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Bolton, Kim
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Journal of Polymer Science Part B: Polymer Physics
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf