Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Molecular-level Simulations of Cellulose Dissolution by Steam and SC-CO2 Explosion
Högskolan i Borås, Institutionen Ingenjörshögskolan.
Högskolan i Borås, Institutionen Ingenjörshögskolan.
2014 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Hållbar utveckling
Innehållet faller inom området hållbar samhällsutveckling
Abstract [en]

Dissolution of cellulose is an important but tough step in biofuel production from lignocellulosic materials. Steam and supercritical carbon dioxide (SC-CO2) explosion are two effective methods for dissolution of some lignocellulosic materials. Loading and explosion are the major processes of these methods. Studies of these processes were performed using grand canonical Monte Carlo and molecular dynamics simulations at different pressure/ temperature conditions on the crystalline structure of cellulose. The COMPASS force field was used for both methods. The validity of the COMPASS force field for the calculations was confirmed by comparing the energy and structures obtained from molecular mechanics simulations of cellobiose (the repeat unit of cellulose), water–cellobiose, water-cellobiose pair and CO2-cellobiose pair systems with those obtained from first principle calculations with and without dispersion correction. A larger disruption of the cellulose crystal structure was seen during loading than that during the explosion process. This is seen by an increased separation of the cellulose chains from the centre of mass of the crystal during the initial stages of the loading, especially for chains in the outer shell of the crystalline structure. Reducing and non-reducing ends of the cellulose crystal show larger disruption than the central core; this leads to increasing susceptibility to enzymatic attack in these end regions. There was also change from the syn to the anti torsion angle conformations, especially for chains in the outer cellulose shell. Increasing the temperature increases the disruption of the crystalline structure during loading and explosion.

Ort, förlag, år, upplaga, sidor
2014.
Nyckelord [en]
Cellulose, Molecular modeling, Force field, Steam explosion, Supercritical carbon dioxide explosion, Resursåtervinning
Nationell ämneskategori
Teoretisk kemi
Forskningsämne
Resursåtervinning
Identifikatorer
URN: urn:nbn:se:hb:diva-7292Lokalt ID: 2320/14559OAI: oai:DiVA.org:hb-7292DiVA, id: diva2:888004
Konferens
Nordic Polymer Days, 10-12 june, Gothenburg, Sweden
Tillgänglig från: 2015-12-22 Skapad: 2015-12-22 Senast uppdaterad: 2016-11-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Bazooyar, FaranakBolton, Kim

Sök vidare i DiVA

Av författaren/redaktören
Bazooyar, FaranakBolton, Kim
Av organisationen
Institutionen Ingenjörshögskolan
Teoretisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 754 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf