Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hydrocarbon combustion and synthesis on Ni(111), Ni(110) and Ni(100) surfaces: A comparative density functional theory study
Högskolan i Borås, Institutionen Ingenjörshögskolan.
Högskolan i Borås, Institutionen Ingenjörshögskolan.
Högskolan i Borås, Institutionen Ingenjörshögskolan.
2014 (engelsk)Konferansepaper, Poster (with or without abstract) (Annet vitenskapelig)
Hållbar utveckling
Innehållet faller inom området hållbar samhällsutveckling
Abstract [en]

Combustion and synthesis of hydrocarbons may occur directly (CH → C + H and CO → C + O) via a formyl intermediate (CH + O → CHO followed by CHO → CO + H and CO + H → CHO followed by CHO → CH + O) . The activation and reaction energies of these reactions on the Ni(111), Ni(110) and Ni(100) surfaces were investigated using density functional theory (DFT). Calculations show that the barriers are sensitive to the surface structure. The barrier for CH dissociation (catalytic hydrocarbon combustion) is lower than that of for its oxidation reaction (CH + O → CHO) on the Ni(110) and Ni(100) surfaces. In contrast, the barrier for oxidation is lower than that for dissociation on the Ni(111) surface. This means CH will preferably dissociate on the Ni(110) and Ni(100) surfaces, but not on the Ni(111) surface. The barrier for dissociation increases in the order Ni(110) < Ni(100) < Ni(111). The barrier of CHO dissociation to CO and H is almost the same on the Ni(111) and Ni(110) surfaces and it is lower compared to the Ni(100) surface. The energy barrier for carbon monoxide dissociation (catalytic hydrocarbon synthesis) is higher than that of for its hydrogenation reaction on all three surfaces. This means that the hydrogenation to CHO favored over the nickel surfaces studied here. The barrier for both reactions increases in the order Ni(110) < Ni(100) < Ni(111). Formyl dissociation to CH + O barrier is the lowest on the Ni(110) surface and follows the order Ni(100) > Ni(111) > Ni(110). Our DFT results show that the Ni(110) surface has a larger catalytic activity compared to the other surfaces, and that Ni is a better catalyst for hydrocarbon combustion than synthesis.

sted, utgiver, år, opplag, sider
2014.
Emneord [en]
Hydrocarbon combustion, hydrocarbon synthesis, nickel, DFT
HSV kategori
Forskningsprogram
Resursåtervinning
Identifikatorer
URN: urn:nbn:se:hb:diva-7282Lokal ID: 2320/14473OAI: oai:DiVA.org:hb-7282DiVA, id: diva2:887994
Konferanse
Swedish Theoretical Chemistry Meeting 2014 New Horizons, 27-29 October 2014, Uppsala, Sweden.
Tilgjengelig fra: 2015-12-22 Laget: 2015-12-22 Sist oppdatert: 2017-03-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Mohsenzadeh, AbasRichards, TobiasBolton, Kim

Søk i DiVA

Av forfatter/redaktør
Mohsenzadeh, AbasRichards, TobiasBolton, Kim
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 610 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf