Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Textile sensing glove with piezoelectric PVDF fibers and printed electrodes of PEDOT:PSS
University of Borås, Faculty of Textiles, Engineering and Business. Swerea IVF AB, Materials department, Mölndal, Sweden. (Textile Materials Technology)
University of Borås, Faculty of Textiles, Engineering and Business. (Textile Materials Technology)ORCID iD: 0000-0002-0558-942X
Swerea IVF AB, Materials department, Mölndal, Sweden.
2015 (English)In: Textile research journal, ISSN 0040-5175, E-ISSN 1746-7748, Vol. 85, no 17, p. 1789-1799Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2015. Vol. 85, no 17, p. 1789-1799
Keywords [en]
textile sensor, smart textile
National Category
Textile, Rubber and Polymeric Materials
Research subject
Textiles and Fashion (General)
Identifiers
URN: urn:nbn:se:hb:diva-4065DOI: 10.1177/0040517515578333ISI: 000361487600003Scopus ID: 2-s2.0-84941924200OAI: oai:DiVA.org:hb-4065DiVA, id: diva2:882473
Available from: 2015-12-15 Created: 2015-12-15 Last updated: 2018-12-01Bibliographically approved
In thesis
1. Electrically conductive textile coatings with PEDOT:PSS
Open this publication in new window or tab >>Electrically conductive textile coatings with PEDOT:PSS
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In smart textiles, electrical conductivity is often required for several functions, especially contacting (electroding) and interconnecting. This thesis explores electrically conductive textile surfaces made by combining conventional textile coating methods with the intrinsically conductive polymer complex poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS).

PEDOT:PSS was used in textile coating formulations including polymer binder, ethylene glycol (EG) and rheology modifier. Shear viscometry was used to identify suitable viscosities of the formulations for each coating method. The coating methods were knife coating, pad coating and screen printing. The first part of the work studied the influence of composition of the coating formulation, the amount of coating and the film formation process on the surface resistivity and the surface appearance of knife-coated textiles. The electrical resistivity was largely affected by the amount of PEDOT:PSS in the coating and indicated percolation behaviour within the system. Addition of a high-boiling solvent, i.e. EG, decreased the surface resistivity with more than four orders of magnitude. Studies of tear strength and bending rigidity showed that textiles coated with formulations containing larger amounts of PEDOT:PSS and EG were softer, more ductile and stronger than those coated with formulations containing more binder. The coated textiles were found to be durable to abrasion and cyclic strain, as well as quite resilient to the harsh treatment of shear flexing. Washing increased the surface resistivity, but the samples remained conductive after five wash cycles.

The second part of the work focused on using the coatings to transfer the voltage signal from piezoelectric textile fibres; the coatings were first applied using pad coating as the outer electrode on a woven sensor and then as screen-printed interconnections in a sensing glove based on stretchy, warp-knitted fabric. Sensor data from the glove was successfully used as input to a microcontroller running a robot gripper. These applications showed the viability of the concept and that the coatings could be made very flexible and integrated into the textile garment without substantial loss of the textile characteristics. The industrial feasibility of the approach was also verified through the variations of coating methods.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2015. p. 46
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 56
Keywords
textile coating, conductive coating, conjugated polymers, ICP, PEDOT:PSS, textile properties, textile sensor, printed electronics, Smart textiles, poly(3, 4-ethylene dioxythiophene)-poly(styrene sulfonate)
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-19 (URN)9789187525391 (ISBN)9789187525407 (ISBN)
Public defence
2015-03-23, T154, The Swedish School of Textiles, Skaraborgsvägen 3A, Borås, 13:00 (English)
Opponent
Available from: 2015-05-19 Created: 2015-02-16 Last updated: 2015-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Åkerfeldt, MariaLund, AnjaWalkenström, Pernilla

Search in DiVA

By author/editor
Åkerfeldt, MariaLund, AnjaWalkenström, Pernilla
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Textile research journal
Textile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 769 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf