Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic classification of background EEG activity in healthy and sick neonates
Högskolan i Borås, Institutionen Ingenjörshögskolan.
Vise andre og tillknytning
2010 (engelsk)Inngår i: Journal of Neural Engineering, ISSN 1741-2560, E-ISSN 1741-2552, Vol. 7, nr 1Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher’s linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

sted, utgiver, år, opplag, sider
Institute of Physics Publishing Ltd. , 2010. Vol. 7, nr 1
Emneord [en]
neonatal, EEG, signal processing, classification, medicin, fysiologi, farmakologi, neonatal care, Medicinteknik
HSV kategori
Identifikatorer
URN: urn:nbn:se:hb:diva-2779DOI: 10.1088/1741-2560/7/1/016007Lokal ID: 2320/6145OAI: oai:DiVA.org:hb-2779DiVA, id: diva2:870873
Merknad

Sponsorship:

Stiftelsen Margarethahemmet

ALF

BIOPATTERN EU Network of Excellence, EU contract 508803

Tilgjengelig fra: 2015-11-13 Laget: 2015-11-13 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://www.iop.org/EJ/article/1741-2552/7/1/016007/jne10_1_016007.pdf?request-id=9d059f1e-4b31-48e8-a85e-b47f2e69dd94

Personposter BETA

Löfhede, JohanLindecrantz, Kaj

Søk i DiVA

Av forfatter/redaktør
Löfhede, JohanLindecrantz, Kaj
Av organisasjonen
I samme tidsskrift
Journal of Neural Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 176 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf