Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Validating Empirical Force Fields for Molecular-level Simulation of Cellulose Dissolution
Högskolan i Borås, Institutionen Ingenjörshögskolan.
Högskolan i Borås, Institutionen Ingenjörshögskolan.
2012 (Engelska)Ingår i: Computational and Theoretical Chemistry, ISSN 2210-271X, E-ISSN 2210-2728, Vol. 984, s. 119-127Artikel i tidskrift (Refereegranskat) Published
Hållbar utveckling
Innehållet faller inom området hållbar samhällsutveckling
Abstract [en]

The calculations presented here, which include dynamics simulations using molecular mechanics forcefields and first principles studies, indicate that the COMPASS forcefield is preferred over the Dreiding and Universal forcefields for studying dissolution of large cellulose structures. The validity of these forcefields was assessed by comparing structures and energies of cellobiose, which is the shortest cellulose chain, obtained from the forcefields with those obtained from MP2 and DFT methods. In agreement with the first principles methods, COMPASS is the only forcefield of the three studied here that favors the anti form of cellobiose in the vacuum. This forcefield was also used to compare changes in energies when hydrating cellobiose with 1–4 water molecules. Although the COMPASS forcefield does not yield the change from anti to syn minimum energy structure when hydrating with more than two water molecules – as predicted by DFT – it does predict that the syn conformer is preferred when simulating cellobiose in bulk liquid water and at temperatures relevant to cellulosedissolution. This indicates that the COMPASS forcefield yields valid structures of cellulose under these conditions. Simulations based on the COMPASS forcefield show that, due to entropic effects, the syn form of cellobiose is energetically preferred at elevated temperature, both in vacuum and in bulk water. This is also in agreement with DFT calculations.

Ort, förlag, år, upplaga, sidor
Elsevier , 2012. Vol. 984, s. 119-127
Nyckelord [en]
cellulose, DFT, COMPASS
Nyckelord [sv]
Energi och material
Nationell ämneskategori
Materialkemi
Forskningsämne
Resursåtervinning
Identifikatorer
URN: urn:nbn:se:hb:diva-1273DOI: 10.1016/j.comptc.2012.01.020ISI: 000302432600016Lokalt ID: 2320/10747OAI: oai:DiVA.org:hb-1273DiVA, id: diva2:869297
Tillgänglig från: 2015-11-13 Skapad: 2015-11-13 Senast uppdaterad: 2017-11-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Bazooyar, FaranakBolton, Kim

Sök vidare i DiVA

Av författaren/redaktören
Bazooyar, FaranakBolton, Kim
Av organisationen
Institutionen Ingenjörshögskolan
I samma tidskrift
Computational and Theoretical Chemistry
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 398 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf