Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Webometrics benefitting from web mining?: An investigation of methods and applications of two research fields
(Social media studies)ORCID-id: 0000-0003-0659-4754
2014 (Engelska)Ingår i: Scientometrics, ISSN 0138-9130, E-ISSN 1588-2861, ISSN 0138-9130 1588-2861, Vol. 99, nr 2, s. 409-445Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Webometrics and web mining are two fields where research is focused on quantitative analyses of the web. This literature review outlines definitions of the fields, and then focuses on their methods and applications. It also discusses the potential of closer contact and collaboration between them. A key difference between the fields is that webometrics has focused on exploratory studies, whereas web mining has been dominated by studies focusing on development of methods and algorithms. Differences in type of data can also be seen, with webometrics more focused on analyses of the structure of the web and web mining more focused on web content and usage, even though both fields have been embracing the possibilities of user generated content. It is concluded that research problems where big data is needed can benefit from collaboration between webometricians, with their tradition of exploratory studies, and web miners, with their tradition of developing methods and algorithms.

Ort, förlag, år, upplaga, sidor
Akademiai Kiado, 2014. Vol. 99, nr 2, s. 409-445
Nyckelord [en]
webometrics, web mining, cybermetrics, web data mining, literature review, interdisciplinary studies
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
Biblioteks- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hb:diva-832DOI: 10.1007/s11192-013-1227-xOAI: oai:DiVA.org:hb-832DiVA, id: diva2:857944
Tillgänglig från: 2015-09-30 Skapad: 2015-09-30 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

fulltext(550 kB)1257 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 550 kBChecksumma SHA-512
3a3b8ef226fde2b74a93583ea4fb09fdfe94e6637a3c2f139cc12dc15666e022aa55a63c8c78d6a668245980ab18c96da8a2776906bfeb2bb632d8da335725c1
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPublished online before print, the final publication is available at link.springer.com

Person

Lorentzen, David

Sök vidare i DiVA

Av författaren/redaktören
Lorentzen, David
I samma tidskrift
Scientometrics
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1257 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 329 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf