Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of Filaments Using Cell Wall Material of Filamentous Fungi Grown on Bread Waste for Application in Medical Textiles
University of Borås, Faculty of Textiles, Engineering and Business.
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is a need for new sustainable textiles to reduce the problems related to the productionof current textiles, including the use of nonrenewable resources, shortages of cotton, and theuse of harmful chemicals. Bio-based materials developed from natural biopolymers areattracting increasing interest as sustainable alternatives to fossil-based materials. Thecultivation of filamentous fungi results in fungal biomass that is rich in biopolymers. In fungalbiorefineries, food waste can be valorized via fungal cultivation, resulting in a broad range ofvalue-added products.

In this study, filaments were designed from the cell wall material of filamentous fungi grownon bread waste and evaluated for application in medical textiles. The developed route forfilament production uses benign processes and reuses food waste. The fungal cell wall, isolatedfrom fungal biomass (mycelia), consists of a matrix of biopolymers, including chitin, chitosan,and glucan. The aim was to directly utilize the cell wall material for developing filamentswithout needing extensive purification of these biopolymers.

Fungal biomass was obtained by cultivating an edible filamentous fungus (Rhizopus delemar)with a cell wall rich in chitosan and chitin. Submerged cultivation using bread waste as asubstrate was demonstrated on multiple scales, from 0.2 L shake flasks to a 1.3 m3 bioreactor.First, a protein hydrolysate was recovered from the fungal biomass via mild enzymatictreatment. The protein hydrolysate exhibited potential as an emulsifier and foaming agent. Thenever-dried cell wall material was isolated using alkali treatment for filament production.Hydrogels formed from the cell wall material after the addition of lactic acid. Hydrogelformation was attributed to the protonation of the amino groups of chitosan present in the cellwall. The hydrogels were wet spun into monofilaments using ethanol as the coagulation agent.The fungal monofilaments are suggested as suitable candidates for applications in medicaltextiles owing to their biocompatibility with human fibroblast cells and their antibacterial andwound-healing properties. This method was also applied to another strain of ediblefilamentous fungi (Aspergillus oryzae), wherein the cell wall mainly comprises chitin andglucan. The cell wall material obtained from A. oryzae was subjected to deacetylation andfreeze–thaw pre-treatments to achieve gelation, and the formed hydrogels were successfullywet spun into monofilaments.

The work presented in this thesis introduces the potential of the valorization of bread wasteinto value-added products based on a biorefinery concept utilizing different edible fungalstrains. This process focuses on scalability and environmental benignity. This studycontributes to the development of novel biomaterials and fungal proteins obtained from fungalcell walls for application in medical textiles and food products, respectively.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2024.
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 151
Keywords [en]
Antibacterial, Ascomycetes, biocompatibility, chitin, chitosan, chitin–glucan, deacetylation, filamentous fungi, food waste, fungal textile, hydrogel, medical textile, monofilament, Mucoromycetes, submerged cultivation, wet spinning, wound healing
National Category
Other Industrial Biotechnology Polymer Chemistry Bioprocess Technology
Research subject
Resource Recovery; Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-31733ISBN: 978-91-89833-48-7 (print)ISBN: 978-91-89833-49-4 (electronic)OAI: oai:DiVA.org:hb-31733DiVA, id: diva2:1848146
Public defence
2024-06-14, C203, Allégatan 1, Borås, 10:00 (English)
Opponent
Available from: 2024-05-21 Created: 2024-04-02 Last updated: 2024-05-23Bibliographically approved
List of papers
1. Valorization of Bread Waste to a Fiber- and Protein-Rich Fungal Biomass
Open this publication in new window or tab >>Valorization of Bread Waste to a Fiber- and Protein-Rich Fungal Biomass
Show others...
2021 (English)In: Fermentation, ISSN 2311-5637, Vol. 7, no 2Article in journal (Refereed) Published
Abstract [en]

Filamentous fungi can be used for the valorization of food waste as a value-added product. The goal of this study was the valorization of bread waste through fungal cultivation and the production of value-added products. The fungal cultivation was verified for upscaling from shake flasks to a bench-scale bioreactor (4.5 L) and a pilot-scale bioreactor (26 L). The fungus showed the ability to grow without any additional enzymes or nutrients, and it was able to consume a bread concentration of 4.5% (w/v) over 48 h. The biomass concentration in the shake flasks was 4.1 g/L at a 2.5% bread concentration, which increased to 22.5 g/L at a 15% bread concentration. The biomass concentrations obtained after 48 h of cultivation using a 4.5% bread concentration were 7.2–8.3 and 8.0 g/L in 4.5 and 26 L bioreactors, respectively. Increasing the aeration rate in the 4.5 L bioreactor decreased the amount of ethanol produced and slightly reduced the protein content of the fungal biomass. The initial protein value in the bread was around 13%, while the protein content in the harvested fungal biomass ranged from 27% to 36%. The nutritional value of the biomass produced was evaluated by analyzing the amino acids and fatty acids. This study presents the valorization of bread waste through the production of a protein- and fatty-acid-rich fungal biomass that is simultaneously a source of microfibers.

Keywords
Rhizopus delemar, food waste, fungal biomass, bread waste, filamentous fungi, mycoprotein, fungal microfibers
National Category
Bioprocess Technology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-25495 (URN)10.3390/fermentation7020091 (DOI)000665170100001 ()2-s2.0-85108511574 (Scopus ID)
Available from: 2021-06-07 Created: 2021-06-07 Last updated: 2024-05-08Bibliographically approved
2. Fungal textiles: Wet spinning of fungal microfibers to produce monofilament yarns
Open this publication in new window or tab >>Fungal textiles: Wet spinning of fungal microfibers to produce monofilament yarns
Show others...
2021 (English)In: Sustainable Materials and Technologies, ISSN 2214-9937, Vol. 28, article id e00256Article in journal (Refereed) Published
Abstract [en]

The cell wall of a zygomycetes fungus was successfully wet spun into monofilament yarns and demonstrated as a novel resource for production of sustainable textiles. Furthermore, the fungus could be cultivated on bread waste, an abundant food waste with large negative environmental impact if not further utilized. Rhizopus delemar was first cultivated in bread waste in a bubble column bioreactor. The fungal cell wall collected through alkali treatment of fungal biomass contained 36 and 23% glucosamine and N-acetyl glucosamine representing chitosan and chitin in the cell wall, respectively. The amino groups of chitosan were protonated by utilizing acetic or lactic acid. This resulted in the formation of a uniform hydrogel of fungal microfibers. The obtained hydrogel was wet spun into an ethanol coagulation bath to form an aggregated monofilament, which was finally dried. SEM images confirmed the alignment of fungal microfibers along the monofilament axis. The wet spun monofilaments had tensile strengths up to 69.5 MPa and Young's modulus of 4.97 GPa. This work demonstrates an environmentally benign procedure to fabricate renewable fibers from fungal cell wall cultivated on abundant food waste, which opens a window to creation of sustainable fungal textiles.

Keywords
Chitin, Chitosan, Filamentous fungi, Zygomycetes, Wet spinning, Monofilaments
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-25100 (URN)10.1016/j.susmat.2021.e00256 (DOI)000663234300010 ()2-s2.0-85100376426 (Scopus ID)
Funder
Vinnova, 2018-04093
Available from: 2021-03-01 Created: 2021-03-01 Last updated: 2024-05-08Bibliographically approved
3. Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments
Open this publication in new window or tab >>Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments
Show others...
2022 (English)In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 209, p. 618-630Article in journal (Refereed) Published
Abstract [en]

Here, cell wall of a zygomycete fungus, Rhizopus delemar, grown on bread waste was wet spun into monofilaments. Using the whole cell wall material omits the common chitosan isolation and purification steps and leads to higher material utilization. The fungal cell wall contained 36.9% and 19.7% chitosan and chitin, respectively. Solid state NMR of the fungal cell wall material confirmed the presence of chitosan, chitin, and other carbohydrates. Hydrogels were prepared by ultrafine grinding of the cell wall, followed by addition of lactic acid to protonate the amino groups of chitosan, and subsequently wet spun into monofilaments. The monofilament inhibited the growth of Bacillus megaterium (Gram+ bacterium) and Escherichia coli (Gram- bacterium) significantly (92.2% and 99.7% respectively). Cytotoxicity was evaluated using an in vitro assay with human dermal fibroblasts, indicating no toxic inducement from exposure of the monofilaments. The antimicrobial and biocompatible fungal monofilaments, open new avenues for sustainable biomedical textiles from abundant food waste. © 2022 The Authors

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
Antibacterial, Biocompatibility, MAS NMR, Chitin/chitosan, Fungal textiles, Wet spinning
National Category
Organic Chemistry Other Industrial Biotechnology Microbiology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-27826 (URN)10.1016/j.ijbiomac.2022.04.031 (DOI)000919073000003 ()2-s2.0-85128311260 (Scopus ID)
Funder
Vinnova, 2018-04093ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 18-449European Regional Development Fund (ERDF), TK134
Available from: 2022-05-04 Created: 2022-05-04 Last updated: 2024-05-08
4. Valorization of Bread Waste to a Fiber- and Protein-Rich Fungal Biomass
Open this publication in new window or tab >>Valorization of Bread Waste to a Fiber- and Protein-Rich Fungal Biomass
Show others...
2021 (English)In: Fermentation, ISSN 2311-5637, Vol. 7, no 2Article in journal (Refereed) Published
Abstract [en]

Filamentous fungi can be used for the valorization of food waste as a value-added product. The goal of this study was the valorization of bread waste through fungal cultivation and the production of value-added products. The fungal cultivation was verified for upscaling from shake flasks to a bench-scale bioreactor (4.5 L) and a pilot-scale bioreactor (26 L). The fungus showed the ability to grow without any additional enzymes or nutrients, and it was able to consume a bread concentration of 4.5% (w/v) over 48 h. The biomass concentration in the shake flasks was 4.1 g/L at a 2.5% bread concentration, which increased to 22.5 g/L at a 15% bread concentration. The biomass concentrations obtained after 48 h of cultivation using a 4.5% bread concentration were 7.2–8.3 and 8.0 g/L in 4.5 and 26 L bioreactors, respectively. Increasing the aeration rate in the 4.5 L bioreactor decreased the amount of ethanol produced and slightly reduced the protein content of the fungal biomass. The initial protein value in the bread was around 13%, while the protein content in the harvested fungal biomass ranged from 27% to 36%. The nutritional value of the biomass produced was evaluated by analyzing the amino acids and fatty acids. This study presents the valorization of bread waste through the production of a protein- and fatty-acid-rich fungal biomass that is simultaneously a source of microfibers.

Keywords
Rhizopus delemar, food waste, fungal biomass, bread waste, filamentous fungi, mycoprotein, fungal microfibers
National Category
Bioprocess Technology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-25495 (URN)10.3390/fermentation7020091 (DOI)000665170100001 ()2-s2.0-85108511574 (Scopus ID)
Available from: 2021-06-07 Created: 2021-06-07 Last updated: 2024-05-08Bibliographically approved

Open Access in DiVA

fulltext(15146 kB)89 downloads
File information
File name FULLTEXT02.pdfFile size 15146 kBChecksum SHA-512
6e22fb93de2639af828971a6f04255663f269444f04ca0746b2957d4c681ee35164939e910e2360be9a81d3bb344650ab840a127e637fbe5fbb368da35eb30ef
Type fulltextMimetype application/pdf
spikblad(221 kB)26 downloads
File information
File name SPIKBLAD01.pdfFile size 221 kBChecksum SHA-512
ca825b4e13b69c007e2895c99026bdfdd1fccb3ab2a2e07cd370c48a51504df66290f3820c57af2e09818e32452ae2ae415b5e4f15a59acb034d7bbc4711756f
Type spikbladMimetype application/pdf

Authority records

Svensson, Sofie

Search in DiVA

By author/editor
Svensson, Sofie
By organisation
Faculty of Textiles, Engineering and Business
Other Industrial BiotechnologyPolymer ChemistryBioprocess Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 99 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 166 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf