Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Well-posedness of an integro-differential equation with positive type kernels modeling fractional order viscoelasticity
Högskolan i Borås, Akademin för textil, teknik och ekonomi. Department of Mathematics, University of Kurdistan, Iran.
2014 (engelsk)Inngår i: European journal of mechanics. A, Solids, ISSN 0997-7538, E-ISSN 1873-7285, Vol. 44, s. 201-211Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A hyperbolic type integro-differential equation with two weakly singular kernels is considered together with mixed homogeneous Dirichlet and non-homogeneous Neumann boundary conditions. Existence and uniqueness of the solution is proved by means of Galerkin's method. Regularity estimates are proved and the limitations of the regularity are discussed. The approach presented here is also used to prove regularity of any order for models with smooth kernels, that arise in the theory of linear viscoelasticity, under the appropriate assumptions on data.

sted, utgiver, år, opplag, sider
2014. Vol. 44, s. 201-211
HSV kategori
Identifikatorer
URN: urn:nbn:se:hb:diva-29397DOI: 10.1016/j.euromechsol.2013.10.014OAI: oai:DiVA.org:hb-29397DiVA, id: diva2:1733592
Tilgjengelig fra: 2023-02-02 Laget: 2023-02-02 Sist oppdatert: 2023-03-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Saedpanah, Fardin

Søk i DiVA

Av forfatter/redaktør
Saedpanah, Fardin
Av organisasjonen
I samme tidsskrift
European journal of mechanics. A, Solids

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 11 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf