Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry
Högskolan i Borås, Akademin för textil, teknik och ekonomi. College of Textile and Clothing Engineering, Soochow University, Suzhou 215168, China.ORCID-id: 0000-0002-1194-597x
College of Textile and Clothing Engineering, Soochow University, Suzhou 215168, China.ORCID-id: 0000-0003-2218-1693
2022 (Engelska)Ingår i: Forecasting, E-ISSN 2571-9394, Vol. 4, nr 2, s. 565-581Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Compared to other industries, fashion apparel retail faces many challenges in predicting future demand for its products with a high degree of precision. Fashion products’ short life cycle, insufficient historical information, highly uncertain market demand, and periodic seasonal trends necessitate the use of models that can contribute to the efficient forecasting of products’ sales and demand. Many researchers have tried to address this problem using conventional forecasting models that predict future demands using historical sales information. While these models predict product demand with fair to moderate accuracy based on previously sold stock, they cannot fully be used for predicting future demands due to the transient behaviour of the fashion industry. This paper proposes an intelligent forecasting system that combines image feature attributes of clothes along with its sales data to predict future demands. The data used for this empirical study is from a European fashion retailer, and it mainly contains sales information on apparel items and their images. The proposed forecast model is built using machine learning and deep learning techniques, which extract essential features of the product images. The model predicts weekly sales of new fashion apparel by finding its best match in the clusters of products that we created using machine learning clustering based on products’ sales profiles and image similarity. The results demonstrated that the performance of our proposed forecast model on the tested or test items is promising, and this model could be effectively used to solve forecasting problems.

Ort, förlag, år, upplaga, sidor
MDPI, 2022. Vol. 4, nr 2, s. 565-581
Nyckelord [en]
sales forecasting, deep learning, fashion and apparel industry, machine learning
Nationell ämneskategori
Annan data- och informationsvetenskap
Forskningsämne
Textil och mode (generell)
Identifikatorer
URN: urn:nbn:se:hb:diva-28240DOI: 10.3390/forecast4020031ISI: 000818326000001Scopus ID: 2-s2.0-85143127022OAI: oai:DiVA.org:hb-28240DiVA, id: diva2:1682132
Tillgänglig från: 2022-07-08 Skapad: 2022-07-08 Senast uppdaterad: 2023-02-06Bibliografiskt granskad

Open Access i DiVA

fulltext(4376 kB)836 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4376 kBChecksumma SHA-512
82fcb9a7c1a42077176f77904a3a6e149693a3b184273145480a23aa34d833edf76be3ba784aec07a2cce9a2fd411b7c8107bd459a361724ee0d7d98a471ede7
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Giri, Chandadevi

Sök vidare i DiVA

Av författaren/redaktören
Giri, ChandadeviChen, Yan
Av organisationen
Akademin för textil, teknik och ekonomi
Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 836 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 479 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf