Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A proposed method using GPU based SDO to optimize retail warehouses
Högskolan i Borås, Akademin för textil, teknik och ekonomi. (Industriell Ekonomi)ORCID-id: 0000-0002-3283-067x
Högskolan i Borås, Akademin för textil, teknik och ekonomi. (Industriell Ekonomi)ORCID-id: 0000-0002-6689-3660
2022 (Engelska)Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

Research in warehouse optimization has gotten increased attention in the last few years due to e-commerce. The warehouse contains a waste range of different products. Due to the nature of the individual order, it is challenging to plan the picking list to optimize the material flow in the process. There are also challenges in minimizing costs and increasing production capacity, and this complexity can be defined as a multidisciplinary optimization problem with an IDF nature. In recent years the use of parallel computing using GPGPUs has become increasingly popular due to the introduction of CUDA C and accompanying applications in, e.g., Python. 

In the case study at the company in the field of retail, a case study including a system design optimization (SDO) resulted in an increase in throughput with well over 20% just by clustering different categories and suggesting in which sequence the orders should be picked during a given time frame. 

The options provided by implementing a distributed high-performance computing network based on GPUs for subsystem optimization have shown to be fruitful in developing a functioning SDO for warehouse optimization. The toolchain can be used for designing new warehouses or evaluating and tuning existing ones. 

Ort, förlag, år, upplaga, sidor
2022.
Nyckelord [en]
AI, Machine Learning, Retail, MSO, Optimization, GPU, NHATC, Warehouse, logistics, hybrid systems
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:hb:diva-27322OAI: oai:DiVA.org:hb-27322DiVA, id: diva2:1630320
Konferens
NVIDIA GTC, San Jose, March 21-24, 2022.
Tillgänglig från: 2022-01-20 Skapad: 2022-01-20 Senast uppdaterad: 2022-04-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Bengtsson, MagnusWaidringer, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Bengtsson, MagnusWaidringer, Jonas
Av organisationen
Akademin för textil, teknik och ekonomi
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 488 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf