Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Forecasting New Apparel Sales Using Deep Learning and Nonlinear Neural Network Regression
Högskolan i Borås, Akademin för textil, teknik och ekonomi.
Högskolan i Borås, Akademin för textil, teknik och ekonomi.
2019 (Engelska)Ingår i: 2019 International Conference on Engineering, Science, and Industrial Applications (ICESI), 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Compared to other retail industries, fashion retail industry faces many challenges to foresee future demand of its products. This is due to ever-changing choices of their consumers, who get influenced by rapidly changing market trends and it leads to the short life cycle of a fashion product. Due to the advent of e-commerce business models, fashion retailers have to put a multitude of virtual product images along with their feature information on their websites in order for their customers to know the fashion products and improve their purchasing experience. It is imperative for fashion retailers to predict future consumer preferences in advance; however, they lack advanced tools to achieve this goal. To overcome this problem, this research work combines the historical information of products with their image features using deep learning and predicts future sales. Apparel images are converted into feature vectors and then are merged with historical sales data. We applied backward propagation neural network model to predict the sales of a new product. It is found that the model performs quite well despite the small size of the dataset. This approach could be promising for forecasting the new arrivals of apparels in the market, and fashion retailers could improve their efficiency and growth.

Ort, förlag, år, upplaga, sidor
2019.
Serie
2019 International Conference on Engineering, Science, and Industrial Applications (ICESI), ISSN 2521-3814
Nyckelord [en]
Forecasting, Deep Learning, Neural Network, Apparel Industry
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hb:diva-22822DOI: 10.1109/ICESI.2019.8863024Scopus ID: 2-s2.0-85073872059ISBN: 978-1-7281-2174-1 (tryckt)ISBN: 978-1-7281-2173-4 (digital)OAI: oai:DiVA.org:hb-22822DiVA, id: diva2:1393435
Konferens
2019 International Conference on Engineering, Science, and Industrial Applications (ICESI), Tokyo, August 22-24, 2019.
Forskningsfinansiär
EU, Europeiska forskningsrådetTillgänglig från: 2020-02-16 Skapad: 2020-02-16 Senast uppdaterad: 2022-09-28

Open Access i DiVA

fulltext(710 kB)355 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 710 kBChecksumma SHA-512
4e2768cc2c07b3b3677d35776b130e87029ab32d91022e1768635045ba040eab286bbfce51e0a4ab018d7d320234c55dc24a2fcf1f82433975b6ccbafb88f064
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopushttps://ieeexplore.ieee.org/document/8863024

Person

Giri, ChandadeviBalkow, Jenny

Sök vidare i DiVA

Av författaren/redaktören
Giri, ChandadeviBalkow, JennyZeng, Xianyi
Av organisationen
Akademin för textil, teknik och ekonomi
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 358 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 840 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf