Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Detailed Review of Artificial Intelligence Applied in the Fashion and Apparel Industry
Högskolan i Borås, Akademin för textil, teknik och ekonomi. Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France; College of Textile and Clothing Engineering, Soochow University, Suzhou 215168, China; Automatique, Génie informatique, Traitement du Signal et des Images, Université Lille Nord de France, F-59000 Lille, France.ORCID-id: 0000-0001-8337-251x
Högskolan i Borås, Akademin för textil, teknik och ekonomi. Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France; College of Textile and Clothing Engineering, Soochow University, Suzhou 215168, China; Automatique, Génie informatique, Traitement du Signal et des Images, Université Lille Nord de France, F-59000 Lille, France.
Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France.
Laboratoire de Génie et Matériaux Textiles (GEMTEX), ENSAIT, F-59000 Lille, France.
2019 (engelsk)Inngår i: IEEE Access, E-ISSN 2169-3536Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The enormous impact of artificial intelligence has been realized in transforming the fashion and apparel industry in the past decades. However, the research in this domain is scattered and mainly focuses on one of the stages of the supply chain. Due to this, it is difficult to comprehend the work conducted in the distinct domain of the fashion and apparel industry. Therefore, this paper aims to study the impact and the significance of artificial intelligence in the fashion and apparel industry in the last decades throughout the supply chain. Following this objective, we performed a systematic literature review of research articles (journal and conference) associated with artificial intelligence in the fashion and apparel industry. Articles were retrieved from two popular databases ‘‘Scopus’’ and ‘‘Web of Science’’ and the article screening was completed in five phases resulting in 149 articles. This was followed by article categorization which was grounded on the proposed taxonomy and was completed in two steps. First, the research articles were categorized according to the artificial intelligence methods applied such as machine learning, expert systems, decision support system, optimization, and image recognition and computer vision. Second, the articles were categorized based on supply chain stages targeted such as design, fabric production, apparel production, and distribution. In addition, the supply chain stages were further classified based on business-to-business (B2B) and business-to-consumer (B2C) to give a broader outlook of the industry. As a result of the categorizations, research gaps were identified in the applications of AI techniques, at the supply chain stages and from a business (B2B/B2C) perspective. Based on these gaps, the future prospects of the AI in this domain are discussed. These can benefit the researchers in academics and industrial practitioners working in the domain of the fashion and apparel industry.

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Artificial intelligence, big data analytics, machine learning, expert systems, fashion and apparel industry
HSV kategori
Forskningsprogram
Handel och IT
Identifikatorer
URN: urn:nbn:se:hb:diva-21847DOI: 10.1109/ACCESS.2019.2928979ISI: 000478676600101Scopus ID: 2-s2.0-85070237602OAI: oai:DiVA.org:hb-21847DiVA, id: diva2:1360491
Merknad

Author 1 and 2 are equal contributing authors.

Tilgjengelig fra: 2019-10-14 Laget: 2019-10-14 Sist oppdatert: 2020-01-31bibliografisk kontrollert

Open Access i DiVA

fulltext(46759 kB)19 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 46759 kBChecksum SHA-512
262d8060d29d026f2605d8fa4060e1acb9f9da4b8a3d50fac9c4296893e7544d55b54780a04f2bb1af6e41b3069026c360d44423bfa841f85fe49a85c39d95c2
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Jain, SheenamGiri, Chandadevi

Søk i DiVA

Av forfatter/redaktør
Jain, SheenamGiri, Chandadevi
Av organisasjonen
I samme tidsskrift
IEEE Access

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 19 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 255 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf