Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigating How an Artificial Neural Network Model Can Be Used to Detect Added Mass on a Non-Rotating Beam Using Its Natural Frequencies: A Possible Application for Wind Turbine Blade Ice Detection
Luleå tekniska universitet, Produkt- och produktionsutveckling.ORCID-id: 0000-0001-8216-9464
Högskolan i Borås, Akademin för textil, teknik och ekonomi. Luleå tekniska universitet, Produkt- och produktionsutveckling.
Luleå tekniska universitet, Produkt- och produktionsutveckling.ORCID-id: 0000-0001-6016-6342
Antal upphovsmän: 32017 (Engelska)Ingår i: Energies, E-ISSN 1996-1073, Vol. 10, nr 2, artikel-id 184Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Structures vibrate with their natural frequencies when disturbed from their equilibrium position. These frequencies reduce when an additional mass accumulates on their structures, like ice accumulation on wind turbines installed in cold climate sites. The added mass has two features: the location and quantity of mass. Natural frequencies of the structure reduce differently depending on these two features of the added mass. In this work, a technique based on an artificial neural network (ANN) model is proposed to identify added mass by training the neural network with a dataset of natural frequencies of the structure calculated using different quantities of the added mass at different locations on the structure. The proposed method is demonstrated on a non-rotating beam model fixed at one end. The length of the beam is divided into three zones in which different added masses are considered, and its natural frequencies are calculated using a finite element model of the beam. ANN is trained with this dataset of natural frequencies of the beam as an input and corresponding added masses used in the calculations as an output. ANN approximates the non-linear relationship between these inputs and outputs. An experimental setup of the cantilever beam is fabricated, and experimental modal analysis is carried out considering a few added masses on the beam. The frequencies estimated in the experiments are given as an input to the trained ANN model, and the identified masses are compared against the actual masses used in the experiments. These masses are identified with an error that varies with the location and the quantity of added mass. The reason for these errors can be attributed to the unaccounted stiffness variation in the beam model due to the added mass while generating the dataset for training the neural network. Therefore, the added masses are roughly estimated. At the end of the paper, an application of the current technique for detecting ice mass on a wind turbine blade is studied. A neural network model is designed and trained with a dataset of natural frequencies calculated using the finite element model of the blade considering different ice masses. The trained network model is tested to identify ice masses in four test cases that considers random mass distributions along the blade. The neural network model is able to roughly estimate ice masses, and the error reduces with increasing ice mass on the blade.

Ort, förlag, år, upplaga, sidor
2017. Vol. 10, nr 2, artikel-id 184
Nyckelord [en]
artificial neural network, ice mass, detection, wind turbine blade, natural frequency
Nationell ämneskategori
Teknisk mekanik Annan maskinteknik
Forskningsämne
Datorstödd maskinkonstruktion
Identifikatorer
URN: urn:nbn:se:hb:diva-15275DOI: 10.3390/en10020184ISI: 000395469200038Scopus ID: 2-s2.0-85014095862OAI: oai:DiVA.org:hb-15275DiVA, id: diva2:1260937
Projekt
Wind power in cold climates
Forskningsfinansiär
Energimyndigheten
Anmärkning

Validerad; 2017; Nivå 2; 2017-02-15 (andbra)

Tillgänglig från: 2018-11-05 Skapad: 2018-11-05 Senast uppdaterad: 2023-08-28

Open Access i DiVA

fulltext(2562 kB)161 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2562 kBChecksumma SHA-512
36e5fa7da3945e46de7e8f3842de9b191ca2c10f895b42ed5b185dafabef55cd5cffe3df7c0a642dc119153cb3ccaefc43d994140a353b4ead64a7493c3fd6b6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopusFulltext

Person

Gantasala, SudhakarLuneno, Jean-ClaudeAidanpää, Jan-Olov

Sök vidare i DiVA

Av författaren/redaktören
Gantasala, SudhakarLuneno, Jean-ClaudeAidanpää, Jan-Olov
Av organisationen
Akademin för textil, teknik och ekonomi
I samma tidskrift
Energies
Teknisk mekanikAnnan maskinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 161 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 166 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf