Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Anaerobic degradation of bioplastics: A review
University of Borås, Faculty of Textiles, Engineering and Business. (Swedish Centre for Resource Recovery)ORCID iD: 0000-0001-7103-4628
University of Borås, Faculty of Textiles, Engineering and Business. (Swedish Centre for Resource Recovery)ORCID iD: 0000-0002-7377-0765
University of Borås, Faculty of Textiles, Engineering and Business. (Swedish Centre for Resource Recovery)
University of Borås, Faculty of Textiles, Engineering and Business. (Swedish Centre for Resource Recovery)ORCID iD: 0000-0003-4887-2433
Show others and affiliations
2018 (English)In: Waste Management, Vol. 80, p. 406-413Article in journal (Refereed) Published
Abstract [en]

Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), leading to renewableenergy production in the form of methane, is a preferable method for dealing with the increasing amountof waste. Food waste is separated at the source in many countries for anaerobic digestion. However, thepresence of plastic bags is a major challenge for such processes. This study investigated the anaerobicdegradability of different bioplastics, aiming at potential use as collecting bags for the OFMSW. Thechemical composition of the bioplastics and the microbial community structure in the AD processaffected the biodegradation of the bioplastics. Some biopolymers can be degraded at hydraulic retentiontimes usually applied at the biogas plants, such as poly(hydroxyalkanoate)s, starch, cellulose and pectin,so no possible contamination would occur. In the future, updated standardization of collecting bags forthe OFMSW will be required to meet the requirements of effective operation of a biogas plant.

Place, publisher, year, edition, pages
2018. Vol. 80, p. 406-413
Keywords [en]
Anaerobic digestion, Biodegradation, Bioplastics, Food waste, Methane, Plastic bags
National Category
Environmental Biotechnology
Identifiers
URN: urn:nbn:se:hb:diva-15152DOI: 10.1016/j.wasman.2018.09.040Scopus ID: 2-s2.0-85054156950OAI: oai:DiVA.org:hb-15152DiVA, id: diva2:1253256
Available from: 2018-10-04 Created: 2018-10-04 Last updated: 2019-01-25Bibliographically approved
In thesis
1. Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system
Open this publication in new window or tab >>Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To address the current plastic pollution problem, the replacement of conventional plastics with bioplastics can be considered. Although the land use of crop cultivation for bioplastics is still negligible, there is an increasing interest in the utilisation of lignocellulosic waste products for the production of bioplastics. A latest trend in researching sources for bioplastic production focuses on the use of fruit and vegetable wastes because of their versatile polysaccharides. Among different fruit wastes, orange waste and apple pomace have been evaluated as raw materials in this thesis.

The development of biofilms and 3D objects from the above-mentioned raw materials via the solution casting and compression moulding methods was investigated. Biocomposites are generally made from a bioplastic matrix and reinforcement, or a plastic reinforced with natural fibres. In the present study, pectin was used as a matrix, and cellulosic fibres wereused as reinforcement. Orange waste films had an opaque appearance with a yellowish colour and were very flexible, while the 3D objects had brown colour. The films had mechanical properties comparable with those of commodity plastics, such as 32 to 36 MPa tensile strength. The films were biodegradable under anaerobic conditions, and 3D objects showed good biodegradability in soil. Grafting of orange waste with maleic anhydride was performed in order to improve its properties, e.g. the hydrophilicity of the polysaccharides-based materials. Grafting reduced the density by 40 % and increased the hydrophobicity compared with unmodified orange waste. Further improvements included upgrading the film casting method and incorporating maleic anhydride in the recipe. The lowest amount of necessary maleic anhydride was determined (0.4 %), and the resulting films had a smoother and more uniform surface. The original methods were also applied to apple pomace in order to produce films and 3D objects. Films from apple pomace had an elongation of 55 %, a twofold increase compared to that of orange waste films containing maleic anhydride (28 %). Orange waste and apple pomace were also mixed for 3D object fabrication, achieving the highest strength of 5.8 MPa (ratio of 75 to 25, respectively) a threefold increase compared to that achieved with only orange waste alone (1.8 MPa).

The results are promising‚ but further improvements, e.g. in respect to hydrophilicity and upscaling‚ are needed for orange waste and apple pomace to develop into raw materials for next-generation bioplastics.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2018
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 93
Keywords
apple pomace, biodegradable, bioplastics, circular economy, orange waste, resource recovery
National Category
Engineering and Technology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-15463 (URN)978-91-88838-21-6 (ISBN)978-91-88838-22-3 (ISBN)
Public defence
2019-02-22, E310, Allégatan 1, Borås, 10:00
Opponent
Available from: 2019-02-01 Created: 2018-12-14 Last updated: 2019-01-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Bátori, VeronikaÅkesson, DanZamani, AkramTaherzadeh, Mohammad JSárvári Horváth, Ilona

Search in DiVA

By author/editor
Bátori, VeronikaÅkesson, DanZamani, AkramTaherzadeh, Mohammad JSárvári Horváth, Ilona
By organisation
Faculty of Textiles, Engineering and Business
Environmental Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 247 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf