Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A solvent-free approach for production of films from pectin and fungal biomass
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0002-1711-7294
University of Borås, Faculty of Textiles, Engineering and Business.ORCID iD: 0000-0003-4887-2433
University of Borås, Faculty of Textiles, Engineering and Business.
2018 (English)In: Journal of polymers and the environment, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 26, no 11, p. 4282-4292Article in journal (Refereed) Published
Sustainable development
According to the author(s), the content of this publication falls within the area of sustainable development.
Abstract [en]

Self-binding ability of the pectin molecules was used to produce pectin films using the compression molding technique, as an alternative method to the high energy-demanding and solvent-using casting technique. Moreover, incorporation of fungal biomass and its effects on the properties of the films was studied. Pectin powder plasticized with 30% glycerol was subjected to heat compression molding (120 °C, 1.33 MPa, 10 min) yielding pectin films with tensile strength and elongation at break of 15.7 MPa and 5.5%, respectively. The filamentous fungus Rhizopus oryzae was cultivated using the water-soluble nutrients obtained from citrus waste and yielded a biomass containing 31% proteins and 20% lipids. Comparatively, the same strain was cultivated in a semi-synthetic medium resulting in a biomass with higher protein (60%) and lower lipid content (10%). SEM images showed addition of biomass yielded films with less debris compared to the pectin films. Incorporation of the low protein content biomass up to 15% did not significantly reduce the mechanical strength of the pectin films. In contrast, addition of protein-rich biomass (up to 20%) enhanced the tensile strength of the films (16.1–19.3 MPa). Lastly, the fungal biomass reduced the water vapor permeability of the pectin films.

Place, publisher, year, edition, pages
2018. Vol. 26, no 11, p. 4282-4292
Keywords [en]
Citrus waste, Pectin, Compression molding, Rhizopus oryzae, Bioplastics
National Category
Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
URN: urn:nbn:se:hb:diva-15055DOI: 10.1007/s10924-018-1300-xISI: 000446743000011Scopus ID: 2-s2.0-85052708199OAI: oai:DiVA.org:hb-15055DiVA, id: diva2:1243131
Available from: 2018-08-30 Created: 2018-08-30 Last updated: 2018-11-30Bibliographically approved
In thesis
1. Fungi-based biorefinery model for food industry waste: progress toward a circular economy
Open this publication in new window or tab >>Fungi-based biorefinery model for food industry waste: progress toward a circular economy
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The food industry, one of the most important industrial sectors worldwide, generates large amounts of biodegradable waste with high organic load. In recent years, the traditional management methods to treat this waste (e.g., landfilling) have been considered not suitable because they do not exploit the potential of the waste material. Alternatively, valorization of food industry waste via a biorefinery model using filamentous fungi is considered to represent an attractive strategy because it minimizes the negative impacts while recovering the nutrients and energy of the waste, in accordance with the concept of the circular economy.

In this thesis, four food processing wastes were utilized as case studies: potato protein liquor (PPL, the soluble fraction of potato starch production waste), the peels wasted during orange juice production, the starchy byproduct of pea protein processes, and the wastewater of a wheat-starch plant. Rhizopus oryzae, a zygomycetous filamentous fungus, was grown with these wastes as a substrate, yielding biomass containing 43% (w/w) protein together with 51% removal of the chemical oxygen demand when cultivated in tenfold-diluted PPL. Moreover, protein-rich biomass was produced using the pea-processing byproduct (55%) and wheat-starch wastewater (51%). In contrast, cultivation in orange peel extract yielded a biomass rich in lipids (20%). The use of PPL was also studied in terms of the economy of fungal cultivation. The biotreatment was found to require only 46% of the capital investment necessary for treating PPL by the traditional strategy (application as fertilizer). In comparison, the ascomycetous fungus Aspergillus oryzae yielded superior results compared to those of R. oryzae when grown in the starchy residues. The high protein content of the fungal biomass encouraged the investigation of its use for bioplastic production. The addition of 20% fungal biomass in a pectin matrix increased the tensile yield of the film and reduced the elongation at break. Moreover, a positive effect on water vapor permeability of the film was also observed.

These results indicate the ability of the filamentous fungi to convert resources wasted by the food industry into new products with positive impacts on the economy and the environment.

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2018
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 89
Keywords
filamentous fungi, circular economy, biorefinery, food industry, fungal biomass, bioplastic, resource recovery
National Category
Other Industrial Biotechnology
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-14888 (URN)978-91-88838-00-1 (ISBN)978-91-88838-01-8 (ISBN)
Public defence
2018-09-25, 310, University of Borås, Allégatan 1, Borås, 10:00 (English)
Opponent
Available from: 2018-08-30 Created: 2018-08-07 Last updated: 2018-11-26Bibliographically approved

Open Access in DiVA

fulltext(1503 kB)26 downloads
File information
File name FULLTEXT01.pdfFile size 1503 kBChecksum SHA-512
10bf708d5f3f24d4df53242e6d4d59229039f86c29b4df255b2f34a4c41cc4c04701a358463504f01e95dcafbe4919b9d936ede601ee2c1328edbe1815f2d078
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Souza Filho, PedroTaherzadeh, Mohammad JZamani, Akram

Search in DiVA

By author/editor
Souza Filho, PedroTaherzadeh, Mohammad JZamani, Akram
By organisation
Faculty of Textiles, Engineering and Business
In the same journal
Journal of polymers and the environment
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 26 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf