Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of Structural Optimization for an Early Stage Product Development
Chalmers University of Technology.
Chalmers University of Technology.
Chalmers University of Technology.ORCID iD: 0000-0002-3283-067x
Chalmers University of Technology.
Show others and affiliations
2017 (English)In: NAFEMS World Congress 2017: Summary of Proceedings, 2017Conference paper, Oral presentation with published abstract (Refereed)
Sustainable development
In my opinion, the content of this publication falls within the area of sustainable development.
Abstract [en]

In today’s automotive industry there is a growing demand for more fuel efficient vehicles and reduced development times. These trends are driven by stricter environmental regulations, a growing environmental awareness, and increasing technological development and competitiveness. Finding an optimized and balanced component that fulfils the requirements in an early phase of the product development is a prerequisite for enabling more competitive lead times, costs, weights and minimizing the risk for late design changes. The aim with this paper is to show a process capturing CAE driven development for an early stage development of components in a complex system. The process utilizes structural optimization techniques to generate knowledge, optimize and balance packaging volumes of adjacent components in complex systems. The paper also highlight the organizational challenges and technical challenges involving the use of structural optimization for realizing the process completely. The paper will illustrate the simultaneous use of topology and shape optimization to generate knowledge for the optimized design volume for multiple adjacent components linked together. The linking of the multiple component is carried out using morphing technique and the design space between the multiple components is dynamic in nature during simulation. The mesh in one component is allowed to change according to the mesh of the other component during the simulation. The result from the simultaneous topology and shape optimization simulation generates the knowledge if it is feasible to change design volume to meet the weight and performance targets. The process also indicates how much performance increase is possible if the design volume is allowed to change and thus generating a trade-off between the components performance. The new process has a potential to be extended to other conflicting scenarios in adjacent components which exists in early stages of development process especially, cases involving conflicting structural requirements in various industries.

Place, publisher, year, edition, pages
2017.
Keywords [en]
Topology Optimization, CAD CAE Integration, Wheel Suspension, CAE Driven Product Design, Engineering Design, Optimization, Product Development
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:hb:diva-14936OAI: oai:DiVA.org:hb-14936DiVA, id: diva2:1237871
Conference
NAFEMS World Congress 2017, Stockholm, 11 June, 2017
Available from: 2018-08-10 Created: 2018-08-10 Last updated: 2018-08-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Abstract

Authority records

Bengtsson, Magnus

Search in DiVA

By author/editor
Bengtsson, Magnus
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 202 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf