Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy
Universidad de Alcalá.
Universidad de Alcalá.
Högskolan i Borås, Akademin för textil, teknik och ekonomi. KTH-School of Technology and Health.ORCID-id: 0000-0002-6995-967X
2016 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, nr 6, artikel-id e0156522Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Bioimpedance spectroscopy (BIS) measurement errors may be caused by parasitic stray capacitance, impedance mismatch, cross-talking or their very likely combination. An accurate detection and identification is of extreme importance for further analysis because in some cases and for some applications, certain measurement artifacts can be corrected, minimized or even avoided. In this paper we present a robust method to detect the presence of measurement artifacts and identify what kind of measurement error is present in BIS measurements. The method is based on supervised machine learning and uses a novel set of generalist features for measurement characterization in different immittance planes. Experimental validation has been carried out using a database of complex spectra BIS measurements obtained from different BIS applications and containing six different types of errors, as well as error-free measurements. The method obtained a low classification error (0.33%) and has shown good generalization. Since both the features and the classification schema are relatively simple, the implementation of this pre-processing task in the current hardware of bioimpedance spectrometers is possible.

Ort, förlag, år, upplaga, sidor
Public Library of Science , 2016. Vol. 11, nr 6, artikel-id e0156522
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:hb:diva-11670DOI: 10.1371/journal.pone.0156522ISI: 000378865200002Scopus ID: 2-s2.0-84977083419OAI: oai:DiVA.org:hb-11670DiVA, id: diva2:1062792
Tillgänglig från: 2016-07-29 Skapad: 2017-01-08 Senast uppdaterad: 2017-11-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusFulltext

Personposter BETA

Seoane, Fernando

Sök vidare i DiVA

Av författaren/redaktören
Seoane, Fernando
Av organisationen
Akademin för textil, teknik och ekonomi
I samma tidskrift
PLoS ONE
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 180 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf