Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Could prioritisation by emergency medicine dispatchers be improved by using computer-based decision support? A cohort of patients with chest pain.
Högskolan i Borås, Akademin för vård, arbetsliv och välfärd. (Prehospen)
Högskolan i Borås, Akademin för vård, arbetsliv och välfärd. (Prehospen)
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: International Journal of Cardiology, ISSN 0167-5273, E-ISSN 1874-1754, Vol. 220, s. 734-738Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

BACKGROUND: To evaluate whether a computer-based decision support system could improve the allocation of patients with acute coronary syndrome (ACS) or a life-threatening condition (LTC). We hypothesised that a system of this kind would improve sensitivity without compromising specificity.

METHODS: A total of 2285 consecutive patients who dialed 112 due to chest pain were asked 10 specific questions and a prediction model was constructed based on the answers. We compared the sensitivity of the dispatchers' decisions with that of the model-based decision support model.

RESULTS: A total of 2048 patients answered all 10 questions. Among the 235 patients with ACS, 194 were allocated the highest prioritisation by dispatchers (sensitivity 82.6%) and 41 patients were given a lower prioritisation (17.4% false negatives). The allocation suggested by the model used the highest prioritisation in 212 of the patients with ACS (sensitivity of 90.2%), while 23 patients were underprioritised (9.8% false negatives). The results were similar when the two systems were compared with regard to LTC and 30-day mortality. This indicates that computer-based decision support could be used either for increasing sensitivity or for saving resources. Three questions proved to be most important in terms of predicting ACS/LTC, [1] the intensity of pain, [2] the localisation of pain and [3] a history of ACS.

CONCLUSION: Among patients with acute chest pain, computer-based decision support with a model based on a few fundamental questions could improve sensitivity and reduce the number of cases with the highest prioritisation without endangering the patients.

Ort, förlag, år, upplaga, sidor
2016. Vol. 220, s. 734-738
Nyckelord [en]
ACS, Chest pain, Decision support model, Mortality, Prehospital
Nationell ämneskategori
Klinisk medicin
Forskningsämne
Människan i vården
Identifikatorer
URN: urn:nbn:se:hb:diva-11504DOI: 10.1016/j.ijcard.2016.06.281ISI: 000381582000139PubMedID: 27393857Scopus ID: 2-s2.0-84979074167OAI: oai:DiVA.org:hb-11504DiVA, id: diva2:1059427
Tillgänglig från: 2016-12-22 Skapad: 2016-12-22 Senast uppdaterad: 2017-11-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Herlitz, JohanBång, Angela

Sök vidare i DiVA

Av författaren/redaktören
Herlitz, JohanBång, Angela
Av organisationen
Akademin för vård, arbetsliv och välfärd
I samma tidskrift
International Journal of Cardiology
Klinisk medicin

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 35 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf