Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting recurrent cardiac arrest in individuals surviving Out-of-Hospital cardiac arrest
Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.ORCID-id: 0000-0002-7438-230X
Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Resuscitation, ISSN 0300-9572, E-ISSN 1873-1570, Vol. 184, artikel-id 109678Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Despite improvements in short-term survival for Out-of-Hospital Cardiac Arrest (OHCA) in the past two decades, long-term survival is still not well studied. Furthermore, the contribution of different variables on long-term survival have not been fully investigated.

Aim: Examine the 1-year prognosis of patients discharged from hospital after an OHCA. Furthermore, identify factors predicting re-arrest and/or death during 1-year follow-up.

Methods: All patients 18 years or older surviving an OHCA and discharged from the hospital were identified from the Swedish Register for Cardiopulmonary Resuscitation (SRCR). Data on diagnoses, medications and socioeconomic factors was gathered from other Swedish registers. A machine learning model was constructed with 886 variables and evaluated for its predictive capabilities. Variable importance was gathered from the model and new models with the most important variables were created.

Results: Out of the 5098 patients included, 902 (∼18%) suffered a recurrent cardiac arrest or death within a year. For the outcome death or re-arrest within 1 year from discharge the model achieved an ROC (receiver operating characteristics) AUC (area under the curve) of 0.73. A model with the 15 most important variables achieved an AUC of 0.69.

Conclusions: Survivors of an OHCA have a high risk of suffering a re-arrest or death within 1 year from hospital discharge. A machine learning model with 15 different variables, among which age, socioeconomic factors and neurofunctional status at hospital discharge, achieved almost the same predictive capabilities with reasonable precision as the full model with 886 variables.

 

Ort, förlag, år, upplaga, sidor
Elsevier, 2023. Vol. 184, artikel-id 109678
Nyckelord [en]
Machine learning, Out-of-hospital cardiac arrest, Prognosis
Nationell ämneskategori
Kardiologi
Identifikatorer
URN: urn:nbn:se:hb:diva-29226DOI: 10.1016/j.resuscitation.2022.109678ISI: 000949949100001Scopus ID: 2-s2.0-85146093009OAI: oai:DiVA.org:hb-29226DiVA, id: diva2:1725476
Tillgänglig från: 2023-01-11 Skapad: 2023-01-11 Senast uppdaterad: 2024-02-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Herlitz, Johan

Sök vidare i DiVA

Av författaren/redaktören
Hellsén, GustafHerlitz, Johan
Av organisationen
Akademin för vård, arbetsliv och välfärd
I samma tidskrift
Resuscitation
Kardiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 69 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf