Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting returns in men’s fashion
Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT.
Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT.
Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT.
2020 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

While consumers value a free and easy return process, the costs to e-tailers associated with returns are substantial and increasing. Consequently, merchants are now tempted to implement stricter policies, but must balance this against the risk of losing valuable customers. With this in mind, data-driven and algorithmic approaches have been introduced to predict if a certain order is likely to result in a return. In this application paper, a novel approach, combining information about the customer and the order, is suggested and evaluated on a real-world data set from a Swedish e-tailer in men’s fashion. The results show that while the predictive accuracy is rather low, a system utilizing the suggested approach could still be useful. Specifically, it is reasonable to assume that an e-tailer would only act on predicted returns where the confidence is very high, e.g., the top 1–5%. For such predictions, the obtained precision is 0.918–0.969, with an acceptable detection rate.

Ort, förlag, år, upplaga, sidor
2020. s. 1506-1513
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Handel och IT
Identifikatorer
URN: urn:nbn:se:hb:diva-24514DOI: 10.1142/9789811223334_0180OAI: oai:DiVA.org:hb-24514DiVA, id: diva2:1512742
Konferens
14th International FLINS Conference (FLINS 2020), Cologne, Germany, 18 – 21 August, 2020
Tillgänglig från: 2020-12-28 Skapad: 2020-12-28 Senast uppdaterad: 2023-03-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttps://www.worldscientific.com/doi/abs/10.1142/9789811223334_0180

Person

Sweidan, DirarJohansson, UlfGidenstam, Anders

Sök vidare i DiVA

Av författaren/redaktören
Sweidan, DirarJohansson, UlfGidenstam, Anders
Av organisationen
Akademin för bibliotek, information, pedagogik och IT
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 466 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf