Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Random Brains
Högskolan i Borås, Institutionen Handels- och IT-högskolan. (CSL@BS)
Högskolan i Borås, Institutionen Handels- och IT-högskolan. (CSL@BS)ORCID-id: 0000-0003-0274-9026
Högskolan i Borås, Institutionen Handels- och IT-högskolan. (CSL@BS)
2013 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this paper, we introduce and evaluate a novel method, called random brains, for producing neural network ensembles. The suggested method, which is heavily inspired by the random forest technique, produces diversity implicitly by using bootstrap training and randomized architectures. More specifically, for each base classifier multilayer perceptron, a number of randomly selected links between the input layer and the hidden layer are removed prior to training, thus resulting in potentially weaker but more diverse base classifiers. The experimental results on 20 UCI data sets show that random brains obtained significantly higher accuracy and AUC, compared to standard bagging of similar neural networks not utilizing randomized architectures. The analysis shows that the main reason for the increased ensemble performance is the ability to produce effective diversity, as indicated by the increase in the difficulty diversity measure.

sted, utgiver, år, opplag, sider
IEEE , 2013.
Emneord [en]
Data mining, Machine Learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:hb:diva-7057Lokal ID: 2320/12922OAI: oai:DiVA.org:hb-7057DiVA, id: diva2:887764
Konferanse
International Joint Conference on Neural Networks, Dallas, TX, USA, August 4-9, 2013.
Merknad

Sponsorship:

Swedish Foundation for Strategic

Research through the project High-Performance Data Mining for Drug Effect

Detection (IIS11-0053) and the Knowledge Foundation through the project

Big Data Analytics by Online Ensemble Learning (20120192)

Tilgjengelig fra: 2015-12-22 Laget: 2015-12-22 Sist oppdatert: 2020-01-29

Open Access i DiVA

fulltekst(144 kB)159 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 144 kBChecksum SHA-512
756b8e2c1d81527badf6022fa4f65f81da0797540d62da03b1775ac507fe90c18cde901d5baf12115b3f5d62fd5a780ee7ffd4b9a9ef333fe51e5928aa61b8f8
Type fulltextMimetype application/pdf

Personposter BETA

Johansson, UlfLöfström, TuveBoström, Henrik

Søk i DiVA

Av forfatter/redaktør
Johansson, UlfLöfström, TuveBoström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 159 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-cite-them-right
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf