Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Genetic Rule Extraction Optimizing Brier Score
Högskolan i Borås, Institutionen Handels- och IT-högskolan. (CSL@BS)
Högskolan i Borås, Institutionen Handels- och IT-högskolan. (CSL@BS)
2010 (engelsk)Inngår i: Genetic and Evolutionary Computation Conference, GECCO 2010, Proceedings of the 12th annual conference on Genetic and evolutionary computation / [ed] Martin Pelikan, Jürgen Branke, ACM , 2010, s. 1007-1014Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Most highly accurate predictive modeling techniques produce opaque models. When comprehensible models are required, rule extraction is sometimes used to generate a transparent model, based on the opaque. Naturally, the extracted model should be as similar as possible to the opaque. This criterion, called fidelity, is therefore a key part of the optimization function in most rule extracting algorithms. To the best of our knowledge, all existing rule extraction algorithms targeting fidelity use 0/1 fidelity, i.e., maximize the number of identical classifications. In this paper, we suggest and evaluate a rule extraction algorithm utilizing a more informed fidelity criterion. More specifically, the novel algorithm, which is based on genetic programming, minimizes the difference in probability estimates between the extracted and the opaque models, by using the generalized Brier score as fitness function. Experimental results from 26 UCI data sets show that the suggested algorithm obtained considerably higher accuracy and significantly better AUC than both the exact same rule extraction algorithm maximizing 0/1 fidelity, and the standard tree inducer J48. Somewhat surprisingly, rule extraction using the more informed fidelity metric normally resulted in less complex models, making sure that the improved predictive performance was not achieved on the expense of comprehensibility.

sted, utgiver, år, opplag, sider
ACM , 2010. s. 1007-1014
Emneord [en]
rule extraction, brier score, genetic programming, Machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:hb:diva-6402DOI: 10.1145/1830483.1830668Lokal ID: 2320/6795ISBN: 978-1-4503-0072-8 (tryckt)OAI: oai:DiVA.org:hb-6402DiVA, id: diva2:887090
Konferanse
GECCO '10: Genetic and Evolutionary Computation Conference Portland Oregon USA July 7 - 11, 2010
Tilgjengelig fra: 2015-12-22 Laget: 2015-12-22 Sist oppdatert: 2022-09-28

Open Access i DiVA

fulltext(376 kB)651 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 376 kBChecksum SHA-512
fffb51ca27a44dae5236d7a2b3f4656e61557bf43bfe04025a6a87b3f4721e3313374ae1424e547ec9c650b73df2346b9c3277318295abba51008564aacdd9d6
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Johansson, UlfKönig, Rikard

Søk i DiVA

Av forfatter/redaktør
Johansson, UlfKönig, Rikard
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 655 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 440 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf