Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting survival and neurological outcome in out-of-hospital cardiac arrest using machine learning: the SCARS model
Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Mölndal, Sweden.ORCID-id: 0000-0003-2730-8710
Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, United States.
Karolinska Institutet, Department of Medicine, Karolinska University Hospital Danderyd, Stockholm, Sweden.
Högskolan i Borås, Akademin för vård, arbetsliv och välfärd. a Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
Vise andre og tillknytning
2023 (engelsk)Inngår i: eBioMedicine, ISSN 2352-3964, Vol. 89, artikkel-id 104464Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: A prediction model that estimates survival and neurological outcome in out-of-hospital cardiac arrest patients has the potential to improve clinical management in emergency rooms.

Methods: We used the Swedish Registry for Cardiopulmonary Resuscitation to study all out-of-hospital cardiac arrest (OHCA) cases in Sweden from 2010 to 2020. We had 393 candidate predictors describing the circumstances at cardiac arrest, critical time intervals, patient demographics, initial presentation, spatiotemporal data, socioeconomic status, medications, and comorbidities before arrest. To develop, evaluate and test an array of prediction models, we created stratified (on the outcome measure) random samples of our study population. We created a training set (60% of data), evaluation set (20% of data), and test set (20% of data). We assessed the 30-day survival and cerebral performance category (CPC) score at discharge using several machine learning frameworks with hyperparameter tuning. Parsimonious models with the top 1 to 20 strongest predictors were tested. We calibrated the decision threshold to assess the cut-off yielding 95% sensitivity for survival. The final model was deployed as a web application.

Findings: We included 55,615 cases of OHCA. Initial presentation, prehospital interventions, and critical time intervals variables were the most important. At a sensitivity of 95%, specificity was 89%, positive predictive value 52%, and negative predictive value 99% in test data to predict 30-day survival. The area under the receiver characteristic curve was 0.97 in test data using all 393 predictors or only the ten most important predictors. The final model showed excellent calibration. The web application allowed for near-instantaneous survival calculations.

Interpretation: Thirty-day survival and neurological outcome in OHCA can rapidly and reliably be estimated during ongoing cardiopulmonary resuscitation in the emergency room using a machine learning model incorporating widely available variables.

sted, utgiver, år, opplag, sider
2023. Vol. 89, artikkel-id 104464
Emneord [en]
Machine learning, Out-of-hospital cardiac arrest, Prediction model, Web application
HSV kategori
Forskningsprogram
Människan i vården
Identifikatorer
URN: urn:nbn:se:hb:diva-29456DOI: 10.1016/j.ebiom.2023.104464Scopus ID: 2-s2.0-85147657303OAI: oai:DiVA.org:hb-29456DiVA, id: diva2:1738054
Forskningsfinansiär
Swedish Research Council, 2019–02019
Merknad

Funding: Swedish Research Council (2019–02019); Swedish state under the agreement between the Swedish government, and the county councils (ALFGBG-971482); The Wallenberg Centre for Molecular and Translational Medicine

Tilgjengelig fra: 2023-02-20 Laget: 2023-02-20 Sist oppdatert: 2024-02-01bibliografisk kontrollert

Open Access i DiVA

fulltext(442 kB)62 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 442 kBChecksum SHA-512
0e6a1da47311d8eb4a8638e881f915578362330a615b8998e9296c2fb22dddf8b23ff3d656439caf8489e32f3684ec8ba3086421dd9a6e1f1826d08a3b400cf3
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Lundgren, PeterHerlitz, Johan

Søk i DiVA

Av forfatter/redaktør
Hessulf, FredrikLundgren, PeterHerlitz, Johan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 62 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf