Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Obtaining Accurate and Comprehensible Data Mining Models: An Evolutionary Approach
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
2007 (engelsk)Doktoravhandling, monografi (Annet vitenskapelig)
Abstract [en]

When performing predictive data mining, the use of ensembles is claimed to virtually guarantee increased accuracy compared to the use of single models. Unfortunately, the problem of how to maximize ensemble accuracy is far from solved. In particular, the relationship between ensemble diversity and accuracy is not completely understood, making it hard to efficiently utilize diversity for ensemble creation. Furthermore, most high-accuracy predictive models are opaque, i.e. it is not possible for a human to follow and understand the logic behind a prediction. For some domains, this is unacceptable, since models need to be comprehensible. To obtain comprehensibility, accuracy is often sacrificed by using simpler but transparent models; a trade-off termed the accuracy vs. comprehensibility trade-off. With this trade-off in mind, several researchers have suggested rule extraction algorithms, where opaque models are transformed into comprehensible models, keeping an acceptable accuracy. In this thesis, two novel algorithms based on Genetic Programming are suggested. The first algorithm (GEMS) is used for ensemble creation, and the second (G-REX) is used for rule extraction from opaque models. The main property of GEMS is the ability to combine smaller ensembles and individual models in an almost arbitrary way. Moreover, GEMS can use base models of any kind and the optimization function is very flexible, easily permitting inclusion of, for instance, diversity measures. In the experimentation, GEMS obtained accuracies higher than both straightforward design choices and published results for Random Forests and AdaBoost. The key quality of G-REX is the inherent ability to explicitly control the accuracy vs. comprehensibility trade-off. Compared to the standard tree inducers C5.0 and CART, and some well-known rule extraction algorithms, rules extracted by G-REX are significantly more accurate and compact. Most importantly, G-REX is thoroughly evaluated and found to meet all relevant evaluation criteria for rule extraction algorithms, thus establishing G-REX as the algorithm to benchmark against.

sted, utgiver, år, opplag, sider
Linköping University, Department of Computer and Information Science , 2007.
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1086
Emneord [en]
rule extraction, ensembles, data mining, genetic programming, artificial neural networks
HSV kategori
Identifikatorer
URN: urn:nbn:se:hb:diva-3415Lokal ID: 2320/2136ISBN: 978-91-85715-34-3 (tryckt)OAI: oai:DiVA.org:hb-3415DiVA, id: diva2:876804
Merknad

Avhandling framlagd 2007-06-01 vid Högskolan i Skövde.

Opponent: Rögnvaldsson, Thorsteinn, Professor, Sektionen för informationsvetenskap, Data- och Elektroteknik, Högskolan i Halmstad.

Tilgjengelig fra: 2015-12-04 Laget: 2015-12-04 Sist oppdatert: 2018-01-10

Open Access i DiVA

fulltekst(2975 kB)1571 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2975 kBChecksum SHA-512
e7f1c0b0aa058f9fe2849d65342bb1b8eee836b03a34d47d57835078021a2b6e063e592a9eec2fdab64aaa2e328d06c2266c35fcb8cca3682a0894b0590b1259
Type fulltextMimetype application/pdf

Person

Johansson, Ulf

Søk i DiVA

Av forfatter/redaktør
Johansson, Ulf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1572 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 426 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • harvard-cite-them-right
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf