Change search
Link to record
Permanent link

Direct link
Publications (10 of 14) Show all publications
Zimna, K., Kahoush, M. & Barburski, M. (2024). Design Potential of Technical Hemp and PLA Nonwovens. Journal of Natural Fibers, 21(1)
Open this publication in new window or tab >>Design Potential of Technical Hemp and PLA Nonwovens
2024 (English)In: Journal of Natural Fibers, ISSN 1544-0478, Vol. 21, no 1Article in journal (Refereed) Published
Abstract [en]

The main purpose of the article is to present the potential use of hemp fibers as reinforcement in composites, but from a design perspective. The authors ask whether sustainable nonwovens, produced based on natural fibers, have the potential as a material for designers and artists and not only as a technical textile. Technical production of nonwovens like carding, punching and laser cutting was used to achieve not just functional, but also aesthetic quality of the samples. The possibilities of utilizing natural materials for design endeavors were presented. The production process of these items was described, along with the main design concept. Research was carried out through a series of interdisciplinary activities, using the knowledge and tools typical for textile and materials engineering, as well as the methodology and strategies derived from the fields of visual art and design. It has been shown that during the development of a new sustainable material significant attention should be paid to design aspects, so it shows its full potential, as not just being eco-friendly, but also functional and aesthetic. While technical hemp and PLA composites have been produced and studied before, the design aspect is unique in the current study. 

Keywords
hemp fibers, PLA, nonwovens, composites, laser-cutting, design
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:hb:diva-32007 (URN)10.1080/15440478.2024.2356696 (DOI)001232926100001 ()2-s2.0-85194518266 (Scopus ID)
Funder
European Commission, 101079009
Available from: 2024-06-07 Created: 2024-06-07 Last updated: 2024-10-01Bibliographically approved
Kahoush, M. & Kadi, N. (2023). FINOLA hemp fiber: from waste to technical textiles. In: : . Paper presented at 2nd International Conference on Knowledge-based Textiles 2023.
Open this publication in new window or tab >>FINOLA hemp fiber: from waste to technical textiles
2023 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

Textile industry is witnessing the renaissance of hemp fiber, due to its sustainability. FINOLA is a breed of hemp that is grown in cold climates for grain production, including EU countries. 

However, after harvest, the residual stalks of these plants are considered low-value waste by-products. In this paper, we aim at optimizing the best methodology to extracting the short fibers from these agri-waste residue of FINOLA hemp, and to use them to produce higher-value technical textiles that can be used in many industries, such as construction and automotive, as an alternative to fossil-based fibers. Ultra-sound assisted mechanical extraction, with a multiple-step process had been developed for this residue. The obtained fibers are analyzed, and the relation between the process parameters and the fiber length is being investigated. The storage conditions will be assessed in relation with the obtained fiber length as well. This process is foreseen to increase the efficiency of this agricultural resource and contribute to circular economy and sustainability of textile sector.

Keywords
hemp, waste, nonwoven, technical textile
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-30100 (URN)
Conference
2nd International Conference on Knowledge-based Textiles 2023
Projects
Bio-based residual streams with potential in the technical textile industry
Funder
Vinnova, 2021-03719
Available from: 2023-07-26 Created: 2023-07-26 Last updated: 2023-08-10Bibliographically approved
Kahoush, M. & Kadi, N. (2023). Finola hemp: Fibre extraction from crops intended for grain-production. In: : . Paper presented at 6th INTERNATIONAL CONFERENCE ON NATURAL FIBERS ICNF.
Open this publication in new window or tab >>Finola hemp: Fibre extraction from crops intended for grain-production
2023 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

This work reports the mechanical extraction process of Finola hemp fibres from the agri-waste of the food industry. FINOLA is a breed of hemp that is grown in cold climates for grain production, including EU countries. However, after harvest, the residual stalks of these plants are considered low-value waste by-products. In this paper, we aim at optimizing the methodology to extracting the short fibres from these agri-waste residue of FINOLA hemp, and to use them to produce higher-value technical textiles that can be used in many industries, such as construction and automotive, as an alternative to fossil-based fibres. Mechanical extraction, with a multiple-step process had been developed for this residue. The obtained fibres showed the potential of use as a material to produce nonwovens from 100% hemp or hemp blends with other fibres. This process is foreseen to increase the efficiency of this agricultural resource and contribute to circular economy and sustainability of textile sector.

Keywords
hemp fiber, waste, nonwoven, technical textile
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-30101 (URN)
Conference
6th INTERNATIONAL CONFERENCE ON NATURAL FIBERS ICNF
Projects
Bio-based residual streams with potential in the technical textile industry
Funder
Vinnova, 2021-03719
Available from: 2023-07-26 Created: 2023-07-26 Last updated: 2023-08-10Bibliographically approved
Kahoush, M. & Kadi, N. (2023). Opening Ratio vs. Quality: Optimizing Fibre Extraction from Hemp Residues. In: Magdalena Tokarska (Ed.), Innovation aspects of textile industry: . Paper presented at InnovaTex 2023 (pp. 48-51). Lodz: Technical University of Lodz
Open this publication in new window or tab >>Opening Ratio vs. Quality: Optimizing Fibre Extraction from Hemp Residues
2023 (English)In: Innovation aspects of textile industry / [ed] Magdalena Tokarska, Lodz: Technical University of Lodz, 2023, p. 48-51Conference paper, Published paper (Refereed)
Abstract [en]

Hemp has emerged as a sustainable alternative to various materials in multiple industries, from textiles to construction. One of the most crucial aspects of optimizing its industrial application is extracting good fibre. While various chemical and mechanical methods exist for this extraction, the mechanical route is often favoured for its eco-friendly profile. This study aims to explore how the 'opening ratio' in mechanical extraction machinery affects the quality of hemp fibres obtained from residues. 

The hemp residue being used comes from Finola hemp; a variety of hemp known for its seeds. However, Finola also contains fibres with potential for various applications. Mechanical extraction trials were conducted using varying opening ratios on a special decorticator machine; the fibres obtained were then subject to a series of quality tests, including tensile strength and fibre length. Preliminary findings suggest a correlation between the opening ratio and fibre quality. This research carries significant implications for the industrial application of hemp fibres. An optimized opening ratio in mechanical extraction processes could enhance the commercial value of hemp fibres while promoting sustainability by turning residues into valuable raw materials. The potential for using Finola fibres in textiles, composites, and other industrial applications is worth exploring.

Place, publisher, year, edition, pages
Lodz: Technical University of Lodz, 2023
Keywords
Hemp fibre, Mechanical extraction, Finola residue, Mechanical properties, Opening ratio
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-30985 (URN)978-83-66287-69-3 (ISBN)
Conference
InnovaTex 2023
Projects
Vinnova - 2021-03719
Funder
Vinnova, 202103719Knowledge Foundation, 20210067
Available from: 2023-12-12 Created: 2023-12-12 Last updated: 2023-12-13Bibliographically approved
Kahoush, M. (Ed.). (2022). Eco-Technologies for Immobilizing Redox Enzymes on Conductive Textiles, for Sustainable Development. Paper presented at Textile Bioengineering and Informatics Society. Global Science Press
Open this publication in new window or tab >>Eco-Technologies for Immobilizing Redox Enzymes on Conductive Textiles, for Sustainable Development
2022 (English)Conference proceedings (editor) (Refereed)
Abstract [en]

The objectives of this work are to investigate the use of different eco-technologies as strategies for immobilization of redox enzymes on conductive carbon-based felts, to produce bio-functionalized textiles for a future use in sustainable applications while maintaining low environmental impact. Methods using cold remote plasma, electrically conductive biocompatible coating (PEDOT:PSS) and natural crosslinker for the enzyme (genipin) were tested and showed to be efficient in the intended applications. The enzymatic activity of the used glucose oxidase was maintained for multiple number of uses, and showed potential in sustainable wastewater treatment applications in bio-Fenton and bio-electro-Fenton setups. 

Place, publisher, year, edition, pages
Global Science Press, 2022
Keywords
Eco-technology, Glucose Oxidase Enzyme, Sustainable Wastewater Treatment, Plasma
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-28248 (URN)10.3993/jfbim00397 (DOI)2-s2.0-85129713911 (Scopus ID)
Conference
Textile Bioengineering and Informatics Society
Available from: 2022-07-11 Created: 2022-07-11 Last updated: 2024-02-01Bibliographically approved
Kahoush, M. & Kadi, N. (2022). Towards sustainable textile sector: Fractionation and separation of cotton/ polyester fibers from blended textile waste. Sustainable Materials and Technologies, Article ID e00513.
Open this publication in new window or tab >>Towards sustainable textile sector: Fractionation and separation of cotton/ polyester fibers from blended textile waste
2022 (English)In: Sustainable Materials and Technologies, ISSN 2214-9937, article id e00513Article in journal (Refereed) Published
Abstract [en]

Textiles made of blended cotton/polyester fibers have a huge share of the markets nowadays. The desirable properties of these blends made them a popular choice for both producers and consumers. However, at the end of life, this blended textile waste is often being disposed of in landfills in many parts of the world, since the fibers are hard to be fractionated and/or separated from each other and sorted according to their type, which hinders their recyclability and re-introduction to the supply chain. A significant loss of resources and big environmental impacts are only few consequences of these practices. In this article, we highlight the state of the art of fractionation and separation of cotton/polyester blended textile waste and the methods used in literature, which could be classified into mechanical, chemical and biological approaches. Additionally, we critically discuss the challenges facing these processes and their scaling-up, providing insights on how to overcome these challenges and the new initiatives in this regard, in order to contribute to the circularity and sustainability of the textile sector.

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
Blended textile waste, Fractionation, Separation, Cotton, Polyester, Sustainability
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-28844 (URN)10.1016/j.susmat.2022.e00513 (DOI)000893010100003 ()2-s2.0-85141694717 (Scopus ID)
Funder
ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 19-613
Available from: 2022-11-01 Created: 2022-11-01 Last updated: 2023-02-07Bibliographically approved
Kahoush, M. & Nierstrasz, V. (2021). Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. Journal of Environmental Chemical Engineering, 9(4), Article ID 105633.
Open this publication in new window or tab >>Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment
2021 (English)In: Journal of Environmental Chemical Engineering, E-ISSN 2213-3437, Vol. 9, no 4, article id 105633Article in journal (Refereed) Published
Abstract [en]

Enzyme immobilization is necessary process to improve the bioactivity and stability of the biocatalyst. In this study, glucose oxidase (GOx) enzyme was immobilized on plasma-treated fibrous carbon felt as a textile carrier to produce a heterogeneous catalyst. Genipin, as a naturally occurring crosslinker, that has less cytotoxicity than conventional crosslinkers, was used in the enzyme immobilization process. UV-Vis and FTIR spectra confirmed the crosslinking reaction between genipin and the primary amines of GOx enzyme, by forming blue-pigmented aggregates. GOx relative activity after crosslinking and immobilization on the carbon felt was maintained up to 40%, with stability in performance up to 6 cycles for the plasma treated carbon, while maintaining their bio-electro-activity as shown from cyclic voltammetry scans (CV). The obtained heterogeneous catalysts have been tested for use in sustainable wastewater treatment of Remazol Blue RR (RB) dyestuff by means of Bio-Fenton (BF) and enzymatic Bio-electro-Fenton (BEF) processes. The produced samples resulted in high color removal efficiency, up to 93% discoloration of (RB) for the first use in (BF) process in 3 h. Meanwhile, enzymatic (BEF) process resulted in up to 34% of COD removal, with simultaneous power density generation up to 0.16 ± 0.01 μW.cm−2 at a current density of around 10 ± 2 μA.cm−2 in 12 h. These results highlight the importance of genipin as a bio-based crosslinker for enzymes, and the potential use in both (BF) and (BEF) as sustainable approaches for wastewater treatment and as a step towards zero-energy degradation of organic matter.

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Glucose oxidase, Genipin, Carbon felt, Wastewater treatment, Bio-Fenton, Bio-electro-Fenton
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-25502 (URN)10.1016/j.jece.2021.105633 (DOI)000670389100001 ()2-s2.0-85106175929 (Scopus ID)
Projects
SMDTEX
Funder
European Commission, 2015-1594/001-001-EMJD
Available from: 2021-06-08 Created: 2021-06-08 Last updated: 2022-09-15Bibliographically approved
Kahoush, M., Behary, N., Cayla, A., Mutel, B., Guan, J. & Nierstrasz, V. (2020). Influence of remote plasma on PEDOT:PSS‐coated carbon felt for improved activity of glucose oxidase. Journal of Applied Polymer Science
Open this publication in new window or tab >>Influence of remote plasma on PEDOT:PSS‐coated carbon felt for improved activity of glucose oxidase
Show others...
2020 (English)In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628Article in journal (Refereed) Published
Abstract [en]

Increasing wettability of carbon felts is an important strategy to improve their efficiency in bio‐electrochemical applications. Herein, influence of cold remote plasma (N2 + O2) treatment on surface properties of carbon felts with poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) coating was tested, aiming to improve immobilizing of glucose oxidase enzyme (GOx). Spectra of N 1s and O 1s confirmed the integration of carbonyl and ether as well as amide and amine groups on bare carbon fiber surface, while on coated fibers, carbonyl groups were pre‐dominant. S 2p spectra confirmed oxidation of PEDOT:PSS coating with reduction of (S−) compared to (SO3−) group. GOx immobilized on different samples showed highest activity for PEDOT:PSS coating subjected to plasma with 2% O2, maintaining up to 60% after immobilization, and 37% of its activity after six cycles for some samples. Enzymes immobilized on samples without plasma treatment lost their activity after four cycles.

Keywords
carbon felt, cold remote plasma, glucose oxidase, PEDOT:PSS
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-23712 (URN)10.1002/app.48521 (DOI)000488192500001 ()2-s2.0-85073961626 (Scopus ID)
Projects
SMDTex
Funder
EU, European Research Council, 2015‐1594/001‐001‐EMJD
Available from: 2020-08-21 Created: 2020-08-21 Last updated: 2024-02-01Bibliographically approved
Kahoush, M. (2019). Eco-Technologies for Immobilizing Redox Enzymes on Conductive Textiles, for Sustainable Development. (Doctoral dissertation). Borås: Högskolan i Borås
Open this publication in new window or tab >>Eco-Technologies for Immobilizing Redox Enzymes on Conductive Textiles, for Sustainable Development
2019 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

Enzyme immobilization on electrically conductive supports is necessary to improve their bioactivity and stability, for use and re-use in applications depending on bio-electrochemical response, such as in bioelectrodes, biosensors, or biofuel cells. However, the immobilization methods used are still facing many challenges in terms of health hazards and high environmental impact. Thus, it is important to find balanced and eco-friendly approaches to achieve efficient immobilization with minimum harmful consequences.

Hence, within the frame of this thesis, the use of eco-technologies such as cold remote plasma, a bio-compatible conductive (PEDOT:PSS) polymer coating, and a bio-based crosslinker “genipin” which has low toxicity, to immobilize glucose oxidase (GOx) enzyme on conductive carbon fiber-based nonwoven textiles was investigated. These carbon-based textiles, regardless of their hydrophobicity, are robust materials to be used as alternative for expensive rigid metals, since they possess good electrical conductivity and good resistance to corrosion in different media.

The results obtained showed that cold remote plasma treatment with nitrogen and oxygen gas mixture was efficient in functionalizing the surface of carbon felts and PEDOT:PSS coated felts. This increased carbon fiber surface energies, and facilitated the immobilization of GOx by physical adsorption with maintained bioactivity and improved reusability. Furthermore, immobilization of GOx using genipin as a crosslinking agent improved remarkably the stability of performance of bio-functionalized carbon felts. This crosslinker showed to be able to directly crosslink the enzymes without a matrix or hydrogel. Finally, the obtained bio-functionalized carbon textiles were primarily evaluated for use in sustainable applications for wastewater treatment such as Bio-Fenton (BF) and enzymatic Bio-Electro-Fenton (BEF). The results showed that bioactivity and bio-electro-activity of immobilized GOx was promising in color removal of Remazol Blue RR reactive dye and its partial degradation from solution in both treatments, which proved the success of the chosen immobilization methods in producing bioactive textiles that can be used as electrodes for power generation and pollution control.

Abstract [fr]

L'immobilisation d'enzymes sur des supports conducteurs d’électricité est nécessaire afin d’améliorer leur bioactivité et leur stabilité, pour une utilisation et une réutilisation dans des applications dépendant de la réponse bio-électrochimique, telles que des bioélectrodes, des biocapteurs ou des piles à biocarburant. Cependant, les méthodes d'immobilisation utilisées rencontrent encore de nombreux défis en termes de risques pour la santé et d'impact environnemental. Il est donc important de trouver des approches équilibrées et respectueuses de l’environnement pour parvenir à une immobilisation efficace avec un minimum de conséquences néfastes.

Ainsi, dans le cadre de cette thèse, l’utilisation d’écotechnologies telles que le plasma froid, le dépôt de polymère conducteur biocompatible (PEDOT: PSS) et d’un agent de réticulation biologiquement basé sur la génipine, peu toxique, permettant l'immobilisation de glucose oxydase (GOx) sur des textiles nontissés à base de fibres de carbone a été étudiée. Ces textiles à base de carbone, quelle que soit leur hydrophobicité, sont des matériaux robustes à utiliser comme alternative aux métaux rigides onéreux, car ils possèdent une bonne conductivité électrique et une bonne résistance à la corrosion dans différents milieux.

Les résultats obtenus ont montré que le traitement plasma froid avec un mélange gazeux d'azote et d'oxygène était efficace pour fonctionnaliser la surface des nontissés de carbone vierge et ceuxrevêtus de PEDOT: PSS. Une augmentation des énergies de surface des fibres de carbone facilite l’immobilisation de GOx par adsorption physique avec une bioactivité maintenue et une meilleure capacité de réutilisation. En outre, l’immobilisation de GOx au moyen de génipine en tant qu’agent de réticulation améliore de façon remarquable la stabilité des performances des feutres de carbone bio-fonctionnalisés. Cet agent de réticulation s'est révélé capable de réticuler directement les enzymes sans matrice ni hydrogel. Enfin, les textiles de carbone bio-fonctionnalisés obtenus ont été principalement évalués pour une utilisation dans des applications durables pour le traitement des eaux usées telles que la Bio-Fenton (BF) et la Bio-Electro-Fenton enzymatique (BEF). Les résultats ont montré que la bioactivité et la bio-activité électrique du GOx immobilisé étaient prometteuses pour l’élimination de la couleur du colorant réactif Remazol Blue RR et sa dégradation partielle à partir de la solution dans les deux traitements, ce qui a prouvé l’efficacité des méthodes d’immobilisation choisies pour la production de textiles bioactifs. Ces textiles peuvent être utilisés comme électrodes pour la production d'énergie et la dépollution.

Abstract [sv]

Enzym immobilisering på elektriskt ledande stöd är nödvändig för att förbättra sina bioaktivitet och stabilitet, till användning och återanvändning i applikationer som är beroende på bioelektrokemiskt respons t.ex. bioelektroder, biosensorer. Däremot den använt immobiliseringsmetoderna fortfarande står inför många utmaningar gäller hälsorisker och miljöpåverk. Det är således viktigt att hitta balanserad och miljövänlig metoder för att uppnå effektiv immobilisering med minimala skadliga konsekvenser.

Därmed den här doktorsavhandling undersöker miljövänlig kall fjärrplasma teknik, en biokompatibel polymerbeläggning (PEDOT: PSS) och ett bio-baserat låg toxicitet tvärbindningsmedel "genipin" för att immobilisera glukosoxidas (GOx) enzym på ledande kolfiberbaserade nonwoven textiler undersöktes. Dessa kolbaserade textilier, oavsett hydrofobicitet, är robusta material och kan användas som alternativ till dyra styva metaller, eftersom de har bra elektrisk ledningsförmåga och bra korrosionsbeständighet i olika medier.

Resultaten visade att kyla avlägsen plasmabehandling med kväve och syreblandning var effektiv vid funktionaliseringen av ytan av kolfilte och PEDOT: PSS-belagd filten. Detta ökade kolfiber ytanergierna och underlättade immobiliseringen av GOx genom fysisk adsorption med förbättrad bioaktivitet och återanvändning. Vidare immobilisering av GOx med genipin tvärbindare förbättrade stabiliteten i prestandan hos biofunktionella kolfilt på ett märkbart sätt. Denna tvärbindare befanns vara i stånd att direkt tvärbinda enzymerna utan en matris eller hydrogel.Äntligen de biofunktionaliserade koltextilierna var primärt använt i hållbara tillämpningar för avloppsrening som Bio-Fenton (BF) och enzymatisk Bio-Electro-Fenton (BEF). Resultaten visade att bioaktivitet och bioelektroaktivitet hos immobiliserad GOx lovade färgavlägsnande av Remazol Blue RR-reaktivt färgämne och dess partiella nedbrytning från lösning i båda behandlingarna, vilket visade framgången hos de valda immobiliseringsmetoderna vid framställning av bioaktiva textiler vilka kan användas som elektroder för elproduktion och föroreningsbekämpning.

Abstract [zh]

生物酶可改善导电材料的生物活性及稳定性,根据其生物电化学反应,经生物酶改性后的导电材料可用于生物电极、生物传感器或生物燃料电池等领域,因此将生物酶固定在导电材料上意义重大。但目前所采用的固定方法对人类生命健康和环境均产生不良影响,仍面临着众多挑战。寻找生态友好的生物酶固定技术以提 高固定效率、降低改性所带来的危害极为重要。因此,本课题主要采用生态友好型技术如低温等离子体远程处理技术(CRP)、生物相容性聚合物聚 (3,4-亚乙基二氧噻吩 ):聚 (苯乙烯磺酸 )(PEDOT:PSS)涂层技术以及利用毒性较低的 “京尼平 ”作为生物基交联剂将葡萄糖氧化酶 (GOx)固定在导电碳纤维基非织造布上 。 如果不考虑碳基纺织品的疏水性的话,该类材料较为坚固,具有良好的导电性,且对各种介质具有较好的耐腐蚀性,因此可用于替代昂贵的刚性金属材料。结果表明,通过氮气和氧气混合气氛下的低温等离子体远程处理技术可有效地将碳毡和PEDOT:PSS涂层毡的表面进行功能化改性。该表面改性可提高碳纤维的表面能,促进葡萄糖氧化酶 (GOx)在碳纤维上的物理吸附性能,并保持葡萄糖氧化酶 (GOx)的生物活性和重复使用性能 。 此外 利用 “京尼平 ”作为葡萄糖氧化酶 (GOx)和碳纤维间的交联剂可明显提高碳毡生物功能性的稳定性。该交联剂可直接用于酶交联,无需使用基质或水凝胶。最后,将制备的生物功能性碳纺织品用于废水处理如 Bio-Fenton (BF)、酶催化 Bio-Electro-Fenton (BEF)等可持续应用中。葡萄糖氧化酶的生物活性和 电生物活性有助于活性染料雷马素蓝 RR溶液的脱色和部分染料的降解,表明通过上述方法制备的具有生物活性的纺织品可用于发电和污染控制等领域。

Place, publisher, year, edition, pages
Borås: Högskolan i Borås, 2019
Series
Skrifter från Högskolan i Borås, ISSN 0280-381X ; 96
Keywords
Eco-technology, Carbon felts, PEDOT:PSS, Glucose oxidase immobilization, Cold remote plasma, Genipin., 生态技术;碳毡; PEDOT:PSS;葡萄糖氧化酶固定化;低温等离子远程处理技 术;京尼平, Eco-technologie, nontissés de carbone, PEDOT: PSS, immobilisation de glucose oxydase, plasma froid, génipine, Ekoteknik, karbonfilt, PEDOT: PSS, immobilisering av glukosoxidas, kall fjärrplasma, genipin.
National Category
Environmental Biotechnology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-21165 (URN)978-91-88838-34-6 (ISBN)978-91-88838-35-3 (ISBN)
Available from: 2019-09-10 Created: 2019-06-05 Last updated: 2019-09-10Bibliographically approved
Kahoush, M., Behary, N., Aurélie, C., Brigitte, M., Jinping, G. & Nierstrasz, V. (2019). Surface modification of carbon felt by cold remote plasma for glucose oxidase enzyme immobilization. Applied Surface Science, 467, 1016-1024
Open this publication in new window or tab >>Surface modification of carbon felt by cold remote plasma for glucose oxidase enzyme immobilization
Show others...
2019 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 467, p. 1016-1024Article in journal (Refereed) In press
Abstract [en]

Despite their chemical inertness and poor hydrophobicity, carbon-based materials are widely used in electrochemical applications due to their robustness, good electrical conductivity and corrosion resistance. The purpose of the work carried was to increase the wettability of nonwoven carbon fiber felts for improved efficiency in bio/electrochemical applications. Virgin Carbon Felt (VCF) was first treated with cold remote plasma (CRP) using a mixture of nitrogen and oxygen (1 or 2 %) as plasma gas.  Bio-functionalization of the carbon felts with glucose oxidase (GOx) enzyme was then carried using physical adsorption method. FTIR and XPS analysis showed an integration of new oxygenated functional groups (C-O and C=O) as well as amines and amides on the surface of VCF treated by the CRP treatment, which improved the wettability of the samples. Capillary uptake increased from around 0 % (for VCF) to nearly 750 % with 2 % oxygen in plasma gas. GOx enzyme showed higher activity after immobilization at pH 5.5 on the CRP treated samples, maintaining up to 50 % of its initial enzymatic activity after six cycles while with the VCF, no enzymatic activity was observed after the fourth cycle. These obtained felts can be used as electrodes in sustainable bioprocesses.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Carbon felt, Cold remote plasma, Surface modification, Glucose oxidase immobilization, Enzyme activity
National Category
Engineering and Technology
Research subject
Textiles and Fashion (General)
Identifiers
urn:nbn:se:hb:diva-15760 (URN)10.1016/j.apsusc.2019.01.155 (DOI)000459458600120 ()2-s2.0-85060727203 (Scopus ID)
Projects
SMDTex
Available from: 2019-02-17 Created: 2019-02-17 Last updated: 2020-01-29Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-0507-9606

Search in DiVA

Show all publications