Open this publication in new window or tab >>Show others...
2013 (English)Conference paper, Published paper (Refereed)
Abstract [en]
Natural fiber composites have got more focus in recent times due to their intrinsic properties such as lightweight, biodegradable, low cost etc. Several researchers have made bio-composites out of many natural fibers such as jute, flax, sisal. These composites have large market in Europe and North America where it is used in automobile and construction industry. A lot of research has been done to improve the properties such as surface modification of fiber, manufacturing hybrid composites. However, the natural fibers are dissimilar and vary largely due to many factors such as variety, harvest, maturity, climate etc. Apart from technical drawbacks, these fibers grow only in certain countries such as India and China. High demand raised the price of these fibers which increases the product price as well. Wood-based fibers such as Lyocell and Viscose was used to make composites in order to make less variation in products, decrease the dependency of natural fibers, promoting locally available fibers and encourage forest products as value-added products. Lyocell and viscose fibers have relatively less variation and high quality. Bio-composites were made by reinforcing wood-based fibers in soybean based thermoset matrix. Hybrid composites were prepared by mixing two different wood-based fibers in known ratio. The fiber content in the composites was between 40 and 60 weight%. Mechanical properties were characterized by tensile, flexural and impact tests. Lyocell and viscose based composites had better mechanical properties than jute fiber composites. Alkali treatment of Lyocell fibers improved the mechanical properties of the composites. The behaviour of wood-based fiber composites were studied under wet environment as well. In wet environment, the mechanical properties of wood-based fiber composites were superior to jute fiber composites. Lyocell based composites had tensile strength of 135 MPa and tensile modulus of 17 GPa. The composites had flexural strength of 127 MPa and flexural modulus of 7 GPa. Better percentage elongation was obtained when viscose fiber was reinforced in matrix. Viscose composites had better impact strength and viscoelastic properties. The change in properties in two different wood-based fibers (Lyocell and viscose) lies in the morphology of the fiber itself. Hybrid composites were produced and the effect of hybridization was clear in most of the cases. The properties were able to be tailored by making hybrid composites, by changing the amount of each fiber in the composites. The results (tensile and flexural) were competitive and fulfil the requirements of these composites to be used in several applications including automotive headliners, car door panel, construction door frame etc. The forest products such as wood fibers could be used in composites to produce environmentally friendly products and promote forest industry.
Wood-based fibers such as Lyocell and Viscose was used to make composites in order to make less variation in products, decrease the dependency of natural fibers, promoting locally available fibers and encourage forest products. Bio-composites were made by reinforcing wood-based fibers in soybean based thermoset matrix. Hybrid composites were prepared by mixing two different wood-based fibers in known ratio. Mechanical properties were characterized by tensile, flexural and impact tests. Lyocell and viscose based composites had better mechanical properties than jute fiber composites. Alkali treatment of Lyocell fibers improved the mechanical properties of the composites. The behaviour of wood-based fiber composites were studied under wet environment as well. In wet environment, the mechanical properties of wood-based fiber composites were superior to jute fiber composites. Lyocell based composites had tensile strength of 135 MPa and tensile modulus of 17 GPa. The composites had flexural strength of 127 MPa and flexural modulus of 7 GPa. Viscose composites had better impact strength and viscoelastic properties. The result fulfils the requirements of these composites to be used in several applications including automotive headliners, car door panel etc. The forest products could be used in composites to produce environmentally friendly products and promote forest industry.
Keywords
Biocomposites, Fiber reinforced composites, Mechanical testing, thermal properties, Resource Recovery
National Category
Materials Engineering
Research subject
Resource Recovery
Identifiers
urn:nbn:se:hb:diva-7062 (URN)2320/12931 (Local ID)2320/12931 (Archive number)2320/12931 (OAI)
Conference
3rd Avancell Conference, Gothenburg, Sweden, October 8 & 9, 2013
2015-12-222015-12-22