12 51 - 52 of 52
rss atomLink to result list
Permanent link
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
  • Aronsson, Julia
    University of Borås, Faculty of Textiles, Engineering and Business.
    Torn to be worn?: Cotton fibre length of shredded post-consumer garments2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In 2015 the global fibre consumption was 96.7 million tonnes, which is an increase of 3.1% from the year before. Our high textile consumption has led to an increasing demand of raw materials and generation of textile waste. Only in Europe, a total amount of 4.3 million tonnes of apparel waste each year is sent to either incineration or landfills. Approximately 50% of the clothes we discard and donate are composed of cotton. In the future, the cotton production is predicted to stagnate since the world population is increasing and arable land to greater extent will be needed for food production. Thereby, it is important that we utilize the cotton waste generated. One of the most commonly used processes for recycling textile waste is the shredding process. In this method, textile waste is shredded back into their constituent fibres. The drawback with the shredding process is that the fibre length is reduced. The fibre length is an important property since it has a high influence on textile processing such as yarn production and final product quality. The aim of this thesis was to investigate how post-consumer cotton garments with different degree of wear affects the fibre length obtained in the shredding process. This was performed by analysing the input fibre length as well as the output fibre length. Additionally, several parameters were investigated: fabric construction and yarn structure. Degree of wear was categorized into two levels: low and high degree of wear. The fabric constructions used in this study were single-jersey and denim. The yarn structure were analysed in terms of yarn count, yarn twist and manufacturing process.  The result showed that the fibre length before shredding was statistically significant longer for the materials with low degree of wear compared to high degree of wear. After shredding, it was shown that the fibre length reduction was lower for the materials with high degree of wear. This indicates that longer fibres give higher fibre length reduction. In addition, it was found that finer yarn gives higher fibre length reduction. The result also showed that the yarn manufacturing process has a great influence on the ease of shredding and the fibre length obtained in the end.  Based on the result in this thesis it can be concluded that the shredding process needs to be improved in order to preserve the fibre length. The area of post-consumer textile waste is complex and the result showed that there is many underlying parameters that need to be taken into account to further develop the shredding process. 

  • Agnhage, Tove
    University of Borås, Faculty of Textiles, Engineering and Business. University Lille 1, France; Soochow University, China.
    Eco-designed functionalization of polyester fabric2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is an increased awareness of the textile dyeing and finishing sector’s high impact on the environment due to high water consumption, polluted wastewater, and inefficient use of energy. To reduce environmental impacts, researchers propose the use of dyes from natural sources. The purpose of using these is to impart new attributes to textiles without compromising on environmental sustainability. The attributes given to the textile can be color and/or other characteristics. A drawback however, is that the use of bio-sourced dyes is not free from environmental concerns. Thus, it becomes paramount to assess the environmental impacts from using them and improve the environmental profile, but studies on this topic are generally absent.

    The research presented in this thesis has included environmental impact assessment, using the life cycle assessment (LCA) tool, in the design process of a multifunctional polyester (PET) fabric using natural anthraquinones. By doing so an eco-design approach has been applied, with the intention to pave the way towards eco-sustainable bio-functionalization of textiles.

    The anthraquinones were obtained from the root extracts of the madder plant (Rubia tinctorum L.), referred to as madder dye. The research questions were therefore formulated related to the use of madder dye. Three research questions have been answered: (I) Can madder dye serve as a multifunctional species onto a PET woven fabric? (II) How does the environmental profile of the dyeing process of PET with madder dye look like, and how can it be improved? (III) What are the main challenges in using LCA to assess the environmental impacts of textile dyeing with plant-based dyes?

    It is concluded that there is a potential for the madder dye to serve as a multifunctional species onto PET. Based on the encouraging result, a recommendation for future work would be to focus on the durability of the functionalities presented and their improvement potential, both in exhaustion dyeing and pad-dyeing. LCA driven process optimization of the exhaustion dyeing enabled improvement in every impact category studied. However, several challenges have been identified which need to be overcome for the LCA to contribute to the sustainable use of multifunctional plant-based species in textile dyeing. The main challenges are the lack of available data at the research stage and the interdisciplinary nature of the research arena. It is envisaged that if these challenges are addressed, LCA can contribute towards sustainable bio-functionalization of textiles.