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Abstract— Photoplethysmography (PPG) can be carried out
through facial video recording by a smart phone camera
in ambient light. The main challenge is to eliminate motion
artifacts and ambient noise. We describe a real-time algorithm
to quantify the heart beat rate from facial video recording
captured by the camera of a smart phone. We extract the
green channel from the video. Then we normalize it and use a
Kalman filter with a particular structure to eliminate ambient
noise. This filter also enhances the heart pulse component in
the signal distorted by Gaussian noise and white noise. After
that we employ a band-pass FIR filter to remove the remaining
motion artifacts. This is followed by peak detection or Lomb
periodogram to estimate heart rate. The algorithm has low
computational overhead, low delay and high robustness, making
it suitable for real-time interaction on a smart phone. Finally
we describe an Android application based on this study.

Index Terms— Kalman filter, Photoplethysmography, Smart
Phone, Real Time, Motion Artifact, Video Recording

I. INTRODUCTION

Non-invasive measurement of cardiac activity is promising
because it causes the least discomfort to patients. Photo-
plethysmography (PPG) is suitable for this kind of application.
It is an optical technique that measures the change of blood
volume in the microvascular vessels from light reflected
from or transmitted through the skin. According to the Beer-
Lambert law, the change of blood volume in the tissue is
reversely proportional to the intensity of the light reflected or
transmitted from skin [1]. This is hardly seen by the naked
eye, but it can be captured by the commercial camera on
board of smart phones.

Measuring the PPG signal in transmitted mode and also
in reflected mode are under development in both academia
and industry, promising future applications of non-invasive
monitoring of cardiac functions. Nowadays, the transmitted
mode is often used in measuring PPG signal from the
fingertip [2]. We, on the other hand, focus on measuring
the PPG signal from facial video recording, which is based
on the reflected mode. Since there is more noise in the remote
measurement, the main problem is how to extract a useful
signal and how to remove noise.

Verkruysse et al., (2008) proposed a method of measuring
plethysmographic signals remotely using ambient light with a
consumer-grade digital camera [3]. They find that although all
of the red, green, and blue channels contain plethysmographic
information, the green channel contains the strongest signal.

Poh et al., (2011) suggested a procedure for computing
heart rate from digital color video [4]. They split the red,
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green, and blue channels from the video, detrended each chan-
nel using a method based on smoothness priors approach [5],
normalized them, and used a linear combination of these three
channels as the blood pulse signal. They used Independent
Component Analysis (ICA) based on the joint approximate
diagonalization of eigenmatrices (JADE) algorithm [6] to
calculate three candidate weights for each channel and used
the fast Fourier transform (FFT) to select the best one.

The core idea in this approach is that the red, green, and
blue signals come from three sources and these sources can be
reconstructed from the obtained signals through ICA. They
interpreted one source as the blood pulse signal, but they
didn’t explain what noises are composed of. In addition,
their algorithm had a high computational overhead, so it
could hardly run in real time on smart phones. To solve
this problem, Kwon et al., (2012) left out ICA and used
only the raw green channel to calculate heart rate [7]. In
their experiments, the independent sources obtained from
ICA were similar to, or not as good as the raw signal of
the green channel. Roald, (2013) tested ICA on RGB, HSL
and HSV color space and found the best ICA channels are
not as good as the best non-ICA channels [8]. They also
suggested that the Hue and Saturation channels were more
robust against noise than the green channel. Furthermore,
they divided the noise into several components:

o=0y+ Og + Om + Oother (1)

Here, o, is white noise, o, is Gaussian noise, o, is motion
artifact and o, 1S other unknown sources of noise.

Among these types of noise, white noise and Gaussian
noise exist in the whole frequency domain, while motion
artifact is usually a low-frequency signal. Roald, (2013) used
a band-pass Finite Impulse Response (FIR) filter, which is
a frequency-domain filter, to remove these noises. But since
white noise and Gaussian noise exist both in the band and
out of band, it is hard to remove it by designing a filter
in the frequency domain. Also, the attempt to smooth the
signal using a time-domain moving average filter, such as a
five-point average, would attenuate the heart pulse signal.

Forgoing the elimination of noise, Hao-Yu Wu et al., (2012)
proposed a method to amplify heart pulse in the facial video
and to make it seen by the naked eye [9]. They used both
spacial and temporal processing of the video.

Here, we propose a structure used in Kalman filters, which,
using only temporal processing, filter out Gaussian white
noise in the PPG signal, and they also amplify the heart
pulse component in the signal.
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Fig. 1: System structure

The key technical contributions of this paper are summa-
rized as follows:

e We propose an algorithm based on Kalman filter to

smooth the PPG signal and amplify heart pulse.

o We implement our method as an Android application.

The rest of this paper is organized as follows. The
experimental procedure and design details of our approach
are described in Section II. Then, we conduct experiments
and compare results in Section III. Finally, we conclude the
paper in Section IV.

II. PROPOSED METHOD
A. Experimental Procedure

We describe our system structure by the flowchart in
Figure (1). First, we extract the green channel from facial
video and record the time stamp. Then, we interpolate the
signal to 15 frames per second (fps). After that, we normalize
the signal y(t) as follows:

2)

where 1 and o are the mean and standard deviation of y(¢).
Then we use Kalman filter to smooth the signal, and to
amplify the heart pulse. After the noise in the signal has been
attenuated, we filter it with a band-pass FIR filter (30-point,
rectangular window, 0.66—2.66 Hz) . Finally, we extract heart
rate from the signal by a peak detection algorithm for real-
time processing, or by the Lomb periodogram for accuracy
and robustness. We developed an Android application Kiwi
Face Cardiac Function Detection based on this procedure. In
what follows, we describe our algorithm in more detail.

B. Smoothing and Amplifying Signal with Kalman Filter

The Kalman filter is a nonstationary recursive filter from
the view of the minimum of variance which can estimate
the useful signal in noisy time series [10]. A steady state
Kalman approach can be described by two linear difference
stochastic equations:

XK = AXyx_1 + W, 3)
2, = Hxy + vy, 4)
where,
Xy = [Th, Tho1, Th—2) &)
wi = [wg,0,0]". (6)

In our experiment, the state variable vector xi is a 3 X 1
column vector, representing the motionless signal vector. The

measured value zj is a scalar. The vector wy is the state
transaction noise and the value vy is the measurement noise.
We assume them to be independent of each other and that they
satisfy Gaussian white noise distributions wy, ~ N (0,Q),
vk ~ N (0, R). The 3 x 3 matrix A relates the state at the
previous time step k — 1 to the state at the current step k,
in the absence of process noise. The 1 x 3 row vector H
relates the state to the measurement [11]. Their values are
set as follows:

2 -1 0

A=1[1 0 0 (7)
0 1 0

H=[1 0 0 (8)

Kalman filtering equations contain two parts: time update
equations and measurement update equations.

1. Time update equations

X = ARk_1 9
P, = AP, AT +Q (10)

2. Measurement update equations
Ky =P H(HP;H" + R) ™ (1)
Rk =%y + Ky (2 — HXy) (12)
P,=(I—-KyH)P, (13)

where K, is the Kalman gain, the 3 x 3 matrix Py is the
estimation of the error covariance, the 3 x 3 matrix P, is
prediction of the error covariance, the 3 x 1 column vector
Xk 1 estimation of the state variable, the 3 x 1 column vector
X, is prediction of the state variable. Here we initialize P
to be a unit matrix, R to be 1 and @ to be the following
matrix:

002 0 0
Q=10 00 (14)
0 0 0

To derive the constants in A and H, we regard xj as a
function of a uniform time sampling tx, xp = x(tg), k =
1,2, ... Assuming that the constant spacing of t is At, we
get the equation tj41 = ¢ + At. When estimating xyy1, we
approximate it at its first-order Taylor series:

0
2(tis1) = (ty + Ab) ~ z(ty) + At S

ot (15)

tr
where we use backward Euler to approximate the derivative:
Ox| _ w(ty) —x(tp—1)

E At (16)

Combining equation 15 with equation 16, we estimate
Tp+1 With 2y as follows:

g1 = T + (T — Tp—1) = 20 — Tp—1 (17)

which is exactly the expression in the first row of A. If we
want to amplify the heart pulse, we make Zj 1, the estimation
of 241, lower than zj, which implies the measured value
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Fig. 2: The comparison of the original PPG signal and that after Kalman filter. In Figure (2a), H = [1 0 0], the high-frequency
noise in the signal is eliminated and the heart pulse is remained. In Figure (2b), H = [0 0 1], the heart pulse is enhanced

after filtering.

is lower than the true value. We introduce a factor o € [—1, 1]
and construct the estimation expression as follows:

Zrp1 = 2k + (T — Tp—1) (18)

The smaller « is, the more x4 exceeds zxi1, which
means the more the heart pulse is amplified. When a = 1,
Zk+1 = 2z — Tx—1 = ZIk+1, which is equivalent to
H = [1 0 0]. While when o« = —1, 241 = @—1, which
is equivalent to H = [0 0 1]. The comparison of these two
cases are shown in Figure (2).

C. Estimating Heart Rate Using Power Spectral Density

After the Kalman filter, the filtered signal is smoothed by a
band-pass filter (30 points, rectangle window, 0.66—2.66 Hz).
To estimate heart rate, we either use a peak detection
algorithm for real-time performance. In this way, we get
peaks in the PPG signal and the frequency of heart beat
is the inverse of the average time interval between nearby
peaks. Alternatively, we use the Lomb periodogram [12]
for a more accurate and robust result. We calculate power
spectral density (PSD) of the PPG signal with 256 points,
oversampling factor o fac = 4, and maximum frequency to be
the average Nyquist frequency [13]. In this way, the frequency
of heart beat is the frequency of the peak in PSD and its
resolution is about 1 beat per minute (bpm). Figure (3) shows
the result of Lomb periodogram.

III. EXPERIMENTAL RESULTS
A. Data Collection

We took samples from 15 participants, 12 males and 3
females. Their ages ranged between 25-35 years. A custom-
developed application on an Android phone was used to
collect data. During the experiment, the subjects were seated
at a table, holding the smart phone by their right hand at a
distance of 0.3m between the front camera and their face. A
pulse oximeter was clipped on their left index finger to show
the true heart beat value. The data-collection application ran
at 15 frame per second for about 30 seconds. We asked the
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Fig. 3: Power spectral density (PSD) of the PPG signal
calculated by Lomb periodogram

subjects to sit without movement and keep their face in the
region of interest, which is a rectangular area at the center
of the screen.

We used an LG G2 phone for all the subjects to acquire
PPG trace. The phone ran Android 4.2.2. The pulse oximeter
was an Etcomm HC-801. We set the region of interest as 400
by 400 pixel. The original picture format was YUV420sp.
We converted it to RGB format and down-sampled it to 100
by 100 pixel. We recorded the time stamp and the mean value
of the green channel as time and amplitude of PPG signal.

B. Analysis

We compared the efficiency of our algorithm against a
state-of-art algorithm, ICA, on traces from the mobile phone.
Table I shows the estimated heart rates and the error rate
between the estimated one and reference one. We found that
when the heart rate was between 60—80 bpm, both algorithms
had a low error rate. But when heart beat exceeded 80 bpm,
the accuracy and robutness of both algorithms decreased. Our
algorithm gave a closer value to the true heart rate than of
ICA.



TABLE I: The estimated heart rates and the error rates

Subj. | Reference ICA Kalman ICA Kalman
(bpm) (bpm) (bpm) | error rate(%) | error rate(%)
1 75 74.6 74.6 0.5 0.5
2 72 71.1 71.1 1.3 1.3
3 73 71.1 71.1 2.6 2.6
4 76 74.6 74.6 1.8 1.8
5 86 70.2 70.2 18.4 18.4
6 85 75.5 75.5 11.2 11.2
7 115 49.2 75.5 57.2 343
8 91 72.9 96.5 19.9 6.0
9 60 79 59.7 31.7 0.5
10 66 65.8 65 0.3 1.5
11 68 67.6 67.6 0.6 0.6
12 76 81.7 81.7 75 7.5
13 75 72 71.1 4.0 52
14 68 68.5 67.6 0.7 0.6
15 69 114.1 72 65.4 4.3
Mean 14.9 6.4
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Fig. 4: Screenshot of our application, Kiwi Face Cardiac
Function Detection

C. Android Application

We have developed Kiwi Face Cardiac Function Detection,
an Android application to estimate heart rate from a facial
video recording. We use the face detection function provided
by Android API [14] to detect whether there is human face in
the center 400 x 400 pixel region of the video frame. Since the
speed of the face detection function is related to size of the
picture and how many times the function is called, we extract
a 400 x 400 pixel gray picture from the region, and down-
sample it to 50 x 50 pixels. Also, we run the face detection
function every second to keep a balance between the real-time
performance and computational overhead. Once a human face
is detected, this application shows the smoothed signal and
the estimation of heart rate in real time. The screenshot of
our application is shown in Figure (4).

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a real-time heart rate estimation
algorithm on smart phone. Various types of noise, including

motion artifacts and ambient noise were taken into considera-
tion in our algorithm. Compared to the method described by
Poh et al., (2011), we used only the green channel rather than
all three RGB channels, because the green channel contained
the strongest heart pulse signal. We also used a Kalman
filter to replace the ICA algorithm for signal smoothing and
enhancement in order to implement the real-time processing
of the PPG signal, which means a more feasible embedding
on smart phones. Moreover, we improved the accuracy of
heart rate estimation in comparison with previous research.
Since the measurement of low heart rate is relatively stable
and accurate, in the future we will focus on improving the
performance of the algorithm on people with a high heart
rate. We believe that this approach will make the measuring
of heart rate from facial video recording applicable to a wider
range of areas, such as sports.
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