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Abstract. Quantum learning of a unitary transformation estimates a quantum channel in a process
similar to process tomography. The classical counterpart of this goal, finding an unknown function, is
regression, although the methodology hardly resembles the outline of classical algorithms. To gain a better
understanding what such a methodology means to learning theory, we anchor it to the familiar concepts
of active learning and transduction. Learning the unitary translates to storing it in quantum memory, but
the procedure also requires an optimal maximally entangled input state; this resembles active learning.
The retrieval strategy is a blend of inductive and transductive learning.
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1 Introduction

Quantum learning of a unitary transformation esti-
mates a quantum channel in a process similar to quantum
process tomography: in tomography, one tries to infer
a classical description of the unknown gate, whereas in
learning, the goal is to simulate the application of the
gate on a new input state, without necessarily having
a classical description [1]. The classical counterpart of
this goal, finding an unknown function, is known as re-
gression, and then applying it to a new data point. In
a classical setting, we define an objective function, and
we seek an optimum subject to constraints and assump-
tions, typically from a parametric family of functions.
The assumption in learning by quantum process tomog-
raphy is that the channel is unitary and that the unitary
transformation is drawn from a group – that is, it meets
basic symmetry conditions [3]. The objective function is
replaced by the fidelity of quantum states.

Apart from these similarities, the rest of the learning
process does not resemble the classical variant. Unlike in
the classical setting, learning a unitary requires a dou-
ble maximization: we need an optimal measuring strat-
egy that optimally approximates the unitary, and we also
need an optimal input state that best captures the infor-
mation of the unitary [4]. Using the learned unitary has
different strategies, which may differ from the classical
application of the estimated function.

In indirect process tomography, we use the Choi-
Jamio lkowski isomorphism to imprint the unitary on a
state. The key steps are as follows [2] (see also Figure 1):

• Learning the unitary translates to the optimal stor-
age and parallel application of the unitary on a suit-
able input state.

• It requires an optimal input state, a superposition
of maximally entangled states. This resembles ac-
tive learning.

• Applying the learned unitary either with a coherent
strategy, that is, retrieving from quantum memory,
or with an incoherent strategy, that is, after mea-
surement and retrieving it from classical memory.

Figure 1: Outline of learning a unitary.

The optimal incoherent strategy is a mixture of in-
ductive and transductive learning, whereas the sub-
optimal coherent strategy is purely transduction.

To gain a better understanding what such a method-
ology means to learning theory, we anchor it to two con-
cepts familiar from this field: active learning [5] and
transduction [6].

2 Active Learning

Active learning is a variant of semi-supervised learning
in which the learning algorithm is able to solicit labels for
problematic unlabelled instances from an appropriate in-
formation source. Some labels are available, but most
of the examples are unlabelled. The task in a learning
iteration is to choose the optimal set of unlabelled ex-
amples for which the algorithm solicits labels from an
appropriate information source, for instance, from a hu-
man annotator [5]. Some typical classical strategies are
as follows:

• Uncertainty sampling: the selected set corresponds
to those data instances where the confidence is low.

• Query by committee: train a simple ensemble that
casts votes on data instances, and select those
which are most ambiguous.



• Expected model change: select those data instances
that would change the current model the most if
the learner knew its label. This approach is par-
ticularly fruitful in gradient-descent-based models,
where the expected change is easy to quantify by
the length of the gradient.

• Expected error reduction: select those data in-
stances where the model performs poorly, that is,
where the generalization error is most likely to be
reduced.

• Variance reduction: generalization performance is
hard to measure, whereas minimizing output vari-
ance is far more feasible; select those data instances
which minimize output variance.

• Density-weighted methods: the selected instances
should not only be uncertain, but also representa-
tive of the underlying distribution.

Optimal quantum learning of unitaries is similar to ac-
tive learning in a sense: it requires an optimal input state.
Since the learner has access to U , by calling the trans-
formation on an optimal input state, the learner ensures
that the most important characteristics are imprinted on
the approximation state of the unitary. The optimal in-
put state for storage can be taken of the form

|φ〉 = ⊕j∈Irr(U⊗N )

√
pj
dj
|Ij〉 ∈ H̃,

where pj are probabilities, the index j runs over the
set Irr(U⊗N ) of all irreducible representations {Uj} con-
tained in the decomposition of {U⊗N}, dj is the di-

mension of the corresponding subspace Hj , and H̃ =
⊕j∈Irr(U⊗N )(Hj ⊗Hj) is a subspace of Ho ⊗Hi carrying

the representation Ũ = ⊕j∈Irr(U⊗N )(Uj⊗Ij), Ij being the
identity in Hj .

Binary classification scheme based on the quantum
state tomography of state classes through Helstrom mea-
surements also requires an optimal input state [7].

3 Transduction

Most classical learning models are inductive: based on
a set of data points – labelled or unlabelled – we infer
a function that will be applied to unseen data points.
Transduction avoids this inference to the more general
case, and it infers from particular instances to particu-
lar instances [8]. This way, transduction asks for less:
an inductive function implies a transductive one. Trans-
duction is similar to instance-based learning, a family of
algorithms that compares new problem instances with
training instances. The goal in transductive learning is
actually to minimize test error, instead of the more ab-
stract goal of maximizing generalization performance [6].

Two different retrieval strategies apply when we would
like to use the learned unitary transformation: a coher-
ent strategy, which stores the unitary in quantum mem-
ory, and an incoherent one, which measures the unitary
and stores it in classical memory; the latter strategy is

considered optimal. The incoherent strategy is a blend
of inductive and transductive learning, as the optimal
input state depends on the number of target states on
which the transformation should be applied, yet once it
is learned, the transformation can be used an arbitrary
number of times.

The optimal retrieving of U from the memory state
|φU 〉 is achieved by measuring the ancilla with the opti-
mal covariant POVM in the form Ξ = |η〉〈η| [2], namely
PÛ = |ηÛ 〉〈ηÛ |, where |ηÛ 〉 = ⊕j

√
dj |Ûj〉, and, condi-

tionally on outcome Û , by performing the unitary Û on
the new input system. The optimal probability coeffi-
cients can be written as

pj =
djmj

dN
,

where mj is the multiplicity of the corresponding
space [3]. This true for the K = 1 case. The more
generic case for arbitrary K takes the global fidelity be-
tween the estimate channel CU and U⊗K , that is, the
objective function averages over (|tr(U†CU )|/d)2. Hence
the exact values of pj always depend on K, tying the op-
timal input state to the number of applications, making
it a case of transduction.
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