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Abstract. A forager in a patchy environment faces two types of uncertainty: am-
biguity regarding the quality of the current patch and risk associated with the
background opportunities. We argue that the order in which the forager deals with
these uncertainties has an impact on the decision whether to stay at the current
patch. The order effect is formalised with a context-dependent quantum proba-
bilistic framework. Using Heisenberg’s uncertainty principle, we demonstrate the
two types of uncertainty cannot be simultaneously minimised, hence putting a
formal limit on rationality in decision making. We show the applicability of the
contextual decision function with agent-based modelling. The simulations reveal
order-dependence. Given that foraging is a universal pattern that goes beyond
animal behaviour, the findings help understand similar phenomena in other fields.

1 Introduction

Studying foraging strategies has been a successful approach in understanding
animal decision making [1]. Foraging patterns are not restricted to animal be-
haviour, similar patterns occur in other scenarios, such as searching in semantic
memory [2], evaluating options by humans [3], and consumer behaviour [4].

Optimal foraging theory (OFT) studies foraging behaviour claiming that
organisms aim to maximise their net energy intake per unit time [5, 6]. Food
sources are available in patches, which vary in quality. Furthermore, switching
between patches comes with a cost. The forager faces uncertainty while mak-
ing decisions about staying at a patch or moving on to the next one. Following
Knight, 1921 and Ellsberg, 1961, we distinguish between two fundamental types
of uncertainty: ambiguity and risk [7, 8]. We associate ambiguity with the esti-
mation of the quality of a patch. Risk, on the other hand, means the potential
of the quality of other patches, the loss or gain by not foraging elsewhere as
opposed to foraging in the current patch.

Decisions in this model are bound to be sequential: the forager must make
decisions patch by patch; this assumption is not uncommon [9–11]. We argue
that the order in which the forager deals with risk and ambiguity has an impact
on the decision, which in turn influences net energy intake. We introduce a



contextual probabilistic framework familiar from quantum mechanics to model
the decision making process.

A growing number of projects in Social Sciences use computer simulation
as their main research tool. A simulation using an agent-based model (ABM)
defines the behaviour of any entity of a system that involves decision-making
processes known as agents. The generation of emergent properties that arise
from the definition of individual agents include both quantitative and qualitative
concepts, combining behaviour aspects and data. Thus, the explanation provided
by an ABM is closer to how knowledge is acquired in Social Sciences. We
rely on an ABM simulation to find evidence of order dependence and context
sensitivity in decision making.

2 Foraging decisions, uncertainty, and context dependence

Risk and ambiguity are factors in various extensions of OFT, and they have been
experimentally verified (Section 2.1). Context dependence, preferring one factor
over the other is also a common behaviour pattern in various animal species
(Section 2.2). These observations provide the foundations for our model.

2.1 Risk and ambiguity

Stochastic variants of OFT are successful in describing strategies that deal with
ambiguity, with numerous experimental validations [12, 1]. Actual foraging
strategies include simple heuristics such as the fixed-time strategy, in which
the forager devotes the same amount of time to each patch irrespective of the
patch quality. More intricate models of patch utilization include the Bayesian
decision process. In this model, animals have an a priori assessments of food
distributions, and their foraging decisions are influenced by experience [13, 1].

The Bayesian foraging strategy relies on the following assumptions [14]:

1. Perfect knowledge of patch-type distribution (a priori).
2. No instant identification of the quality of a particular patch, resulting in a

sample.

The second assumption corresponds to ambiguity as a form of uncertainty.
Foraging decision is formulated by an a posteriori distribution made using

the sample. An estimator keeps track of the mean value of the current patch,
which is either under- or oversampled compared to the actual patch quality.
This decision making process leads to density-dependent resource harvest. In
the Bayesian model, the forager is allowed to make sequential decisions that
vary according its current state, which is affected by the outcome of previous
decisions.



The other aspect of uncertainty, risk, is also present in OFT. If foraging
decisions are influenced by past history, the variations of any foraging parameter
affect the expected rate of food gain, and hence the optimal foraging strategy [1].
Variance in a parameter is associated with risk. Foraging decisions are risk-
sensitive, as empirical and theoretical proofs show [15, 16]. Risk sensitivity
should have a sequential component, but it is often overlooked [9]. Whether
a simultaneous or a sequential decision making model follows reality closer
depends on the degree to which a forager commits itself when making a choice.
For instance, in a sequence of choices, immediate rewards are more valuable
than delayed ones: the time saved is used to pursue further rewards [10].

2.2 Contextuality

Context-dependent decision rules consider both aspects of uncertainty. We un-
dertand the human decision making is context-dependent [17, 18], but the phe-
nomenon is less understood in animals. As Freidin and Kacelnik, 2011 put it,
“context-dependent utility results from the fact that perceived utility depends
on background opportunities” [11]. Spatially or temporally distinct patches are
contexts that differ in quality. The sequence of optimal decisions depends on the
attributes of the present opportunity and its background options.

Ample experimental evidence shows context-dependent decisions. Honey
bees have an intransitive behaviour pattern, the perform a comparative evalua-
tion of flowers depending on the context [19]. Gray jays have a similar behaviour,
hinting at a complex decision process involving context-dependent assessment of
each fitness-related value of the options [20]. Rufous humming birds change their
risk preferences depending on whether binary or trinary choices are available to
them [21]. The foraging choices of European starlings are better explained by
context-dependent utility [22], the birds being more risk averse at lower temper-
atures [23]. Another study confirmed these findings, pointing out that sequential
food encounters are more likely in an animal’s natural environment [11]. Simul-
taneous decision making is important in many species, for instance, humans are
able to alternate between the two models of choice [24].

3 Quantum probabilistic description of foraging decisions

We turn to quantum probability theory to derive a formal decision model of a
context-dependent optimal foraging strategy that considers both risk and ambigu-
ity in a sequential setting. We use the quantum probabilistic description purely as
a mathematical device, we do not conjecture that a forager’s context-dependent
decision making process is the result of a macroscopic escalation of quantum



effects starting at a sub-atomic level. This investigation is part of a recent trend
which claims quantum-like behaviour of systems is in fact not uncommon [25,
26].

Our efforts are not the first to bridge contextual probability and animal be-
haviour. Competing lizard communities and population dynamics also show
quantum-like behaviour [27, 28].

3.1 Quantum probability and decisions

The fundamental difference between classical and quantum probability is that
the event algebra in the latter is non-commutative. That is, given two events, A
and B, p(A ∩B) 6= p(B ∩A). To understand how non-commutativity leads to
context-dependence, let us consider two hypotheses that describe the decision
space of a forager:

– h1: Stay at the current patch.
– h2: Leave the patch.

These are complementary and mutually exclusive (this example resembles
the one described in Trueblood and Busemeyer, 2011 about a medical decision
on whether a patient has urinary tract infection [29]).

Consider the following events:

– A: Current patch quality with two possible outcomes: a1 – the patch quality
is good; a2 – the patch quality is bad.

– B: Quality of other patches. A collective observation across all other patches
with two possible outcomes.

A corresponds to ambiguity, whereas B corresponds to risk, the opportunity
cost. We will argue that A and B are incompatible observations on a system,
leading to non-commutativity and context-dependence. To achieve that, first we
demonstrate how quantum probability theory derives probabilistic outcomes. In
a quantum framework, the forager’s state of belief is described by a state vector
in superposition. Under observation A, this superposition is written as

|ψ〉 =
∑
i,j

αij |Aij〉 (1)

In this case, for instance, Ah1,a1 means the event that the forager will stay at
the patch and the current patch quality is good, and Ah2,a2 corresponds to the
event in which the forager will leave the patch and the patch has low quality.
These elementary events form an orthonormal basis. The αij values are the



corresponding probability amplitudes. Since the norm of the state vector must
be one, we have ∑

i,j

|αij |2 = 1. (2)

To measure the probability of one combination, we use a projection operator.
The projector onto the event h1 ∧ a1 is given by

P11 = P (h1, a1) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (3)

If we apply the projector on the state vector, the square norm of the projected
vector will be the quantum probability of h1∧a1: ||P11|ψ〉|| = |α11|2. Similarly,
if we are interested in the probability of whether the forager would stay at the
current spot, we need to project onto the first two basis vectors, and the result
will be |α11|2 + |α12|2.

Switching to observation B, the state of belief is a superposition of four
basis vectors: |ψ〉 =

∑
i,j βij |Bij〉. These basis vectors are not identical to

previous ones: the same hypotheses, the decision whether to stay or leave, are
now expressed in a different basis. This is equivalent to saying that the same
problem is studied from a different perspective: under observation A, the forager
bases its decision on local information, whereas under B, it looks at a global
perspective. If the two perspectives can be expressed in the same basis, they are
called compatible, otherwise they are incompatible; in the present case we take
A and B incompatible. Since the state vector can be expressed in both basis, we
have

|ψ〉 =
∑
i,j

αij |Aij〉 =
∑
i,j

βij |Bij〉. (4)

To switch from one perspective to the other, to change the basis, we need to
apply a unitary rotation. To change from perspective A to B, we need to apply
the unitary transformation UAB , whereas to change from B to A, we need to
apply UBA.

Context sensitivity arises from the quantum equivalent of Bayes’ rule, also
known as Lüders’ rule [30]. Suppose that event A is true, the patch is of good
quality. This changes the original state |ψ〉 to |ψA〉 = Pa1|ψ〉/||Pa1|ψ〉||. The
denominator re-normalises the state vector to meet the condition described in
Eq. (2). The probability of event B given that A is true will be ||Pb1|ψa1〉||2 =
||Pb1Pa1|ψ〉||2/||Pa1|ψ〉||2. Generally speaking, two projectors are not commu-
tative, that is, Pa1Pb1 6= Pb1Pa1. Therefore the probability of event A given that



B is true will be different. Measuring the perceived quality of other patches,
the forager may deem those more desirable, and the quality of the current patch
looses its importance.

Since the result of an earlier decision changes the context of a new deci-
sion, a simple Bayesian inference model has difficulty accounting for order
effects [29]. A key concept of quantum probability is incompatibility. Not all
elementary events can be measured simultaneously, incompatible events can
only be measured in a sequence. The first assumption in the Bayesian decision
process, which assumes the forager has an a priori knowledge of the probability
distribution of the entire event space (Section 2.1), is too strong. For instance,
the forager has an assessment of the quality of the current patch, which updates
its a priori estimate of the distribution. To sample the frequency of such patches,
it must move on to the next patch, abandoning the current one. The quality of the
current patch and the quality of the other patches are incompatible observations.
The latter is related to the risk the forager faces. Incompatibility is a source
of order effects on judgements, and this is the critical point at which quantum
probabilities differ from classic probabilities [30]. We show that this approach
formally introduces a limit on rational decisions by applying the uncertainty
principle to foraging decisions involving risk and ambiguity.

3.2 Inherent uncertainty in sequential decisions

If two observables do not commute, a state cannot be a simultaneous eigenvector
of the two observables in general [31, p.233]. This leads to a form of uncertainty
relation, similar to the one the inequality found by Heisenberg in his analysis
of sequential measurements of position and momentum. This original relation
states that there is a fundamental limit to the precision with which the position
and momentum of a particle can be known.

Since observations A and B do not commute, there must be a similar limit
in foraging decisions corresponding to Heisenberg’s uncertainty principle. The
forager needs to leave the current patch to assess the quality of other patches:
there is an inherent uncertainty in the decision irrespective of the quantity of
information gained about either A or B. Since the observables in foraging do
not have a strict physical meaning, the physical constants of the canonical com-
mutation relation are not present. Yet, as long as the operators do not commute,
an uncertainty principle with a similar lower bound will hold. With regards to
risk and ambiguity, we state that

σAσB ≥ c, (5)

where c > 0 is a constant. The constant itself will depend on actual foraging
scenarios, we do not believe there is a universal way of determining its value.



4 Simulation by agent-based modelling

We use an ABM simulation to model contextuality of a decision function, which
is not an entirely novel idea. Kitto, Boschetti, and Bruza (2012) proposed an
ABM to simulate changing attitudes in social decision making [32]. The context
in that case evolves with time, global attitudes and the individuals’ own local
attitudes change over time, making a case for a contextual decision making
function. We do not require temporal evolution of contexts, we assume an order
dependence emphasising the two different aspects of dealing with uncertainty.

We use Pandora [33, 34], an open-source ABM framework designed to ac-
complish a realistic simulation environment for social scientists. The source
code of the simulation is available online4.

4.1 Model

In the simulation model, we generate a small map with heterogeneous resources
available to the forager. An agent is placed at a random position with certain
requirements: the quantity of resources needed at every time step. The starvation
rate is the agent’s accumulated percentage of past time steps when requirements
were not achieved. The inverse of this value is the net food intake. The agent
has a limited time horizon, the number of time steps into the future the agent is
exploring possible scenarios. The agent has a knowledge of the patch distribution,
it keeps track of the values and knowledge quality of patches already visited.

An agent is parametrized by the following characteristics:

– Ambiguity aversion: a value between 0 to 1 specifying the preference of the
agent to avoid ambiguity. Ambiguity aversion is related to observation A.

– Risk aversion: a value between 0 to 1 specifying the preference of the agent
to avoid risk. Risk aversion is related to observation B.

The sum of risk and ambiguity preferences is equal to one. An agent at every
time step chooses between two actions: either explore and forage in the current
patch, resulting in a decrease in ambiguity; or move and explore an adjacent
patch, resulting in a decrease in risk.

Possible scenarios are explored using a Markov decision process that allows
to explore the decisions of an agent within a fully observable stochastic state
model. In our simulation, the model was solved using the UCT algorithm [35],
capable of defining optimal policies for problems with a large set of possible
states and finite horizon. The parameters of the algorithm were the horizon of

4 Code is available at https://github.com/xrubio/pandora. This example is in the
pandora/examples/quantumForaging folder.



the agent and the width (i.e. the number of states explored during the process),
the latter was defined at 300 for all the experiments.

The risk and ambiguity of the resources are varied, and also the agent’s
preference to minimizing risk (R) or minimizing ambiguity (A). The decision
function is a normalised linear combination of the two options for minimizing
uncertainty, combined with the cost associated with starving. Thus, the final cost
C of an action a given current state s is as follows:

Cs,a =
m

M
+ (1− aA)A+ (1− aR)R (6)

where m is the resources consumed in this time step, M corresponds to the
resource requirements, aA is the decrease of ambiguity of the action, and aR is
the decrease of risk of the action. The value of decrease is 1 if the knowledge of
the patch is not complete, and 0 all the other cases.

Once an action is chosen, the knowledge of the patch where it occurs is
increased by 1 if the maximum is not already reached. At the same time, the
quality of the patch in the knowledge map of the agent is updated to the real value
if a random value between 0 and 10 is lesser than current knowledge. Finally, the
starvation rate of the agent is updated comparing the requirements with foraged
resources; this will be always 0 when choosing a Movement action.

4.2 Experiments

We analysed the trade-off between ambiguity and risk with different time horizon
thresholds for a resource map of 20 × 20 cells, and a time span of 1,000 steps.
Every scenario contains a single agent, and the exploration of the parameter
space is defined terms of time horizon values (1, 3, 5, and 7 steps), and risk
aversion ranging from 0 to 1 in 0.1 increments. Each scenario was run 10 times
for a total of 440 experiments. This configuration was used in two different
experiments:

1. Gradual resource map. The value of each patch is its x relative coordinate
multiplied by 10.

2. Random resource map. The value of each patch is defined using a random
uniform distribution.

4.3 Discussion of results

Figure 1 shows net food intakes for the gradual resource maps, and Figure 2
shows net food intakes for the random distribution of resources.
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Fig. 1. Net food intakes for different scenarios using the gradual resource map

A common pattern to all the experiments is a distinct phase transition at
complete risk aversion. At risk aversion value of one, the net food intake sharply
drops compared to all other values of this parameter. The phenomenon is not
surprising: this behaviour means that the forager hardly ever consumes resources,
and keeps visiting patch after patch to learn the overall distribution. While hardly
a realistic scenario, it is worth taking note of.

For a time horizon of one time step, there is a different pattern for risk
aversion below 0.5. The variance of net food intake is lowest at 0.1 in both types
of resource distribution. Whereas the mean value is higher for larger values of
risk aversion, a real-life forager would probably prefer reducing the variance.
This behaviour indicates fairly long visits to a patch before exploring other
options. To some extent, the observation holds for a time horizon of 3 steps. For
risk aversion values higher than 0.5, the pattern is less obvious. While generally
it pays of to reduce risk first, the exact extent of risk aversion is ambiguous.
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Fig. 2. Net food intakes for different scenarios using the random resource map

If the time horizon is at least 5 steps, reducing risk first becomes far more
important and leads to much higher rewards. A patch is easily depleted in five
steps, so thinking ahead means a willingness to reduce risk, and the pay-off is
clearly visible.

The values of risk aversion of zero and one are the extreme cases of order
dependence, whereas the values in between correspond to a case of a more
balanced decision making process. For a given parameter setting in the simulated
environment, the highest point of the food intake is an empirical limit on the
completeness of knowledge, and corresponds to the inequality in the uncertainty
principle, as shown in Eq. (5).



5 Conclusions

Relying on a classical Markovian decision model, we simulated the behaviour
of a forager in an environment where food resources are available in patches of
varying quality. Well-defined patterns emerged that show order-dependence of
decisions, and the decisions have a significant impact on net food intake. Our
observations coincide with a quantum probabilistic model that considers two
aspects of uncertainty, risk and ambiguity, and states that decisions relating to
these two aspects are order-dependent.
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