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Abstract—Combining several ANNs into an ensemble normally
results in a very accurate and robust predictive model. Many
ANN ensemble techniques are, however, quite complicated and
often explicitly optimize some diversity metric. Unfortunately,
the lack of solid validation of the explicit algorithms, at least
for classification, makes the use of diversity measures as part
of an optimization function questionable. The merits of implicit
methods, most notably bagging, are on the other hand exper-
imentally established and well-known. This paper evaluates a
number of straightforward techniques for introducing implicit
diversity in ANN ensembles, including a novel technique pro-
ducing diversity by using ANNs with different link structures.
The experimental results, comparing altogether 54 setups and
two different ensemble sizes on 30 UCI data sets, show that all
methods succeeded in producing implicit diversity, but that the
effect on ensemble accuracy varied. Still, most setups evaluated
did result in more accurate ensembles, compared to the baseline
setup, especially for the larger ensemble size. As a matter of
fact, several setups even obtained significantly higher ensemble
accuracy than bagging. The analysis also identified that diversity
was, relatively speaking, more important for the larger ensembles.
Looking specifically at the methods used to increase the implicit
diversity, setups using the technique that utilizes the randomized
link structures generally produced the most accurate ensembles.

I. INTRODUCTION

Predictive classification is the task of learning a target
function f mapping each instance x to one of the predefined
class labels y. The target attribute y (the class label) is a
discrete attribute, restricted to values in a predefined set
{c1, c2, . . . , cn}. When using machine learning techniques for
predictive classification, the algorithm uses a set of training
instances, each consisting of an input vector xi and a cor-
responding target value yi to learn the function y = f(x; θ).
During training, the parameter values θ are optimized, based
on a score function. When sufficiently trained, the predictive
model is able to accurately predict a value ŷ, when presented
with a novel (test) instance xj.

Within machine learning, it is well established that com-
bining several individual classifiers into ensembles all but
guarantees improved predictive performance, compared to
single models, see e.g., [1] and [2]. An ensemble aggregates
multiple classifiers (called base classifiers) into a composite
model, making the ensemble prediction a function of all the
included base classifiers.

If the base classifiers H = {h1, h2, . . . , hm} of an ensemble
are trained on the training set, the output (prediction) of a

base classifier hj on instance xi is hj(xi). This prediction is,
in the general case, a vector of size n consisting of beliefs
(often probability estimates) associated with each class. Often,
however, each base classifier simply votes for one specific
class, i.e., just produces a class label.

Given a set of trained base classifiers, together with a
corresponding set of weights W = {w1, w2, . . . , wm}, where
wj ≥ 0 and

∑m
j=1 wj = 1, the ensemble classifies each in-

stance by choosing the class that receives the largest weighted
vote. If all classifier weights are equal, the procedure is
referred to as majority voting when the base classifiers output
class labels, and averaging when they output beliefs.

The most intuitive explanation for why ensembles work
is that the aggregation of several models, using averaging
or majority voting, will eliminate uncorrelated base classifier
errors; see e.g., [3]. Consequently, ensemble accuracy will
normally be higher than mean base classifier accuracy, but
only as long as the base classifiers commit their errors on dif-
ferent instances. Ideally, the base classifiers should make their
mistakes independently. Informally, the key term ensemble
diversity therefore measures and describes how base classifier
mistakes are distributed over the instances.

In [4], Brown et al. introduced a taxonomy of methods
for creating diversity. The first obvious distinction made is
between explicit methods, where some diversity metric is
directly optimized, and implicit methods, where the method is
likely to produce diversity without actually targeting it. Several
implicit methods produce diversity by supplying each classifier
with a slightly different training set. Standard bagging [5] ob-
tains diversity by using resampling to create different training
sets for each base classifier. More specifically, each training
set (called a bootstrap) has the same size as the original
training set, but since the instances are randomly selected
with replacement, a training set will contain multiple copies of
some instances while lacking others completely. On average,
approximately 63% of the orginal instances are present in
each bootstrap. In the random subspace method [6], the base
classifiers are trained on randomly chosen subspaces of the
original attribute space, i.e., the individual training sets are
instead sampled in the attribute (feature) space.

In contrast to, for instance, random forests [7], most dedi-
cated ensemble techniques utilizing artificial neural networks
(ANNs) as base classifiers have a tendency to be quite compli-
cated, often explicitly optimizing some diversity metric. This



is despite the fact that solid empirical, as well as theoretical
validation of the explicit algorithms, are absent from the field
[8]. Actually, the current situation can be summarized like
this: On the one hand, diversity is obviously beneficial for
ensembles, but on the other hand, it is very questionable if
any suggested diversity measure is actually useful as part of
an optimization function.

Based on this, we argue that implicit methods for producing
diversity in ANN ensembles should receive increased interest.
Consequently, the overall purpose of this paper is to evaluate a
number of basic techniques for introducing implicit diversity
in ANN ensembles. The analysis focuses on the predictive
performance of the ensembles, using base classifier accuracy
and different diversity measures to explain and discuss the
results obtained.

II. BACKGROUND

The important result that ensemble error depends not only
on the average accuracy of the base models but also on their
diversity was formally derived by Krogh and Vedelsby in [9].
In their simple formula, the ensemble error E can be expressed
as:

E = Ē − Ā (1)

where Ē is the average base model error and Ā is the aver-
age ensemble diversity (ambiguity), measured as the weighted
average of the squared differences in the predictions of the
base models and the ensemble. In a regression context and
using averaging to combine predictions, this is equivalent to:

E = (ŷ − y)2 =

∑m
i=1(hi − y)2

m
−
∑m

i=1(hi − ŷ)2

m
(2)

Since diversity is always positive, this decomposition proves
that the ensemble will always have higher accuracy than the
average accuracy obtained by the individual classifiers. Actu-
ally, it can be shown that if the base classifiers perform better
than random while making independent errors, the resulting
error of the ensemble can be made arbitrarily small [10].
Although independent base models is impossible to achieve
in practice, all ensemble methods strive to obtain diverse
models while maintaining a sufficient level of accuracy for
each model.

By assuming that the ensemble is a convex combined
ensemble (e.g., using averaging), a bias-variance-covariance
decomposition can be obtained for the ensemble MSE:

E = (ŷ − y)2 = bias
2

+
1

m
var + (1− 1

m
)covar (3)

From this it is evident that the error of the ensemble depends
critically on the amount of correlation between models, as
quantified in the covariance term. As a matter of fact, there are
several approaches, referred to as negative correlated learning
[11] that explicitly minimize the covariance. Negative corre-
lated learning has been applied mainly to ANN ensembles, two
fairly recent algorithms are negbagg and negboost [12]. Still,

it must be noted that although it has been shown that negative
correlated learning directly controls the covariance term in
the bias-variance-covariance trade-off for regression problems
[13], it is not obvious how this applies to classification.

For classification ensembles, where the base classifiers are
only able to output a class label, the outputs have no intrinsic
ordinality between them, thus making the concept of covari-
ance undefined. So, using a zero-one loss function, there is no
clear analogy to the bias-variance-covariance decomposition.
Instead, a large number of different diversity measures, all
trying to quantify the contribution of the differences between
the base classifiers to the overall ensemble accuracy have been
suggested.

Diversity measures are often divided into pairwise and non-
pairwise measures. Pairwise measures calculate the average
of a particular distance metric between all possible pairings
of classifiers in the ensemble, while non-pairwise measures
typically use some variation of entropy, or calculate a corre-
lation of each ensemble member with the averaged output. In
this study, we will use two of the pairwise measures and one
non-pairwise.

It must be noted that all diversity measures are in fact
calculated on what is sometimes called an oracle output
matrix, i.e., the correct target values are assumed to be known.
Let the (oracle) output of each classifier Di be represented
as an N-dimensional binary vector yi, where yj,i = 1 if
Di correctly recognizes instance zj and 0 otherwise. Let
Nab mean the number of instances for which yj,i = a and
yj,k = b. As an example, N11 is the number of instances
correctly classified by both classifiers. N is the total number
of instances.

The most intuitive diversity measure is probably the dis-
agreement measure, which is the ratio between the number
of instances on which one classifier is correct and the other
incorrect to the total number of instances:

Disi,k =
N10 +N01

N
(4)

To find the diversity of a specific ensemble consisting of
L classifiers, the averaged Dis over all pairs of classifiers is
calculated:

Dis =
2

L(L− 1)

L−1∑
i=1

L∑
k=i+1

Disi,k (5)

Naturally a higher disagreement value implies a larger
diversity. The double-fault measure was proposed in [14] and
is the proportion of instances misclassified by both classifiers:

DFi,k =
N00

N
(6)

To calculate the double fault diversity for an ensemble, the
double fault values are averaged over all pairs of classifiers,
identically to disagreement. For double fault, a lower value
indicates higher diversity. Comparing double fault and dis-
agreement, the main difference is that when using disagree-
ment, N00 and N11 are treated equally, while the double fault



measure is not “punished” when both classifiers are correct. In
a setting where the purpose is to obtain accurate ensembles,
this may appear to be a strong argument for double fault, but
it should be noted that, as a consequence, double fault will be
positively correlated with the base classifier accuracy.

The non-pairwise difficulty measure was introduced by
Hansen and Salomon in [10]. Let X be a random variable
taking values in {0/L, 1/L, . . . , 1}. X is defined as the
proportion of classifiers that correctly classify an instance
x drawn randomly from the data set. To estimate X , all L
classifiers are run on the data set. The difficulty is then defined
as the variance of X . For difficulty, lower values mean higher
diversity, with the explanation that for a diverse classifier
ensemble, every instance can at least be classified correctly by
a portion of all the base classifiers, which is likely to result
in a lower variance. The opposite would mean that all base
classifiers are correct on some instances and wrong on some
other instances, which of course would lead to higher variance.

Despite the fact that both intuition and a strong theoretical
foundation advocate the benefit of diverse base classifiers,
none of the suggested diversity measures is proven superior to
the others. As a matter of fact, when Kuncheva and Whitaker
studied ten statistics measuring diversity using oracle outputs,
i.e., correct or incorrect vote for the class label, all diversity
measures evaluated showed low or very low correlation with
test set accuracy, see [15]. In [16], Saitta supports Kuncheva’s
negative view, as presented in a series of papers, but she
also goes one step further and shows not only that no useful
measure exists today, but also that it is unlikely that one will
ever exist.

Clearly, these results seem to favor implicit methods. As a
matter of fact, it may be argued that the best use for diversity
is not during the optimization, but rather as a tool for analysis
and explanation.

A. Related work.

Naturally, most standard methods for building ensembles
have been applied to (and have often been modified for)
ANN base classifiers. As an example, both standard bagging
and boosting [17] can be readily used on ANN classifiers.
Comparing bagging and boosting, bagging has one inherent
advantage since the models can be trained in parallel.

To produce more diverse ANN ensembles, Maclin and
Shavlik [18] deliberately initialized the weights so different
base classifiers would start out in different parts of the
weight space. Cherkauer [19], suggested another, even more
straightforward method, when producing diversity simply by
using different number of hidden nodes in the base classifiers.
Oza and Tumer [20] suggested using different subsets of the
input features for each ANN, similar to the random subspace
method. In a previous study, we evaluated some basic methods
for producing implicit diversity in ANN ensembles [21]. The
main result was that for the fairly small ensembles studied,
standard bagging was actually most often ineffective. Using
heterogeneous architectures, on the other hand, generally im-
proved the predictive performance.

More advanced implicit methods include the DECORATE
algorithm [22], which creates the diversity by adding different
artificial training instances to each base classifier training set.
Similarly, Raviv and Intrator [23], proposed a method com-
bining bagging, weight decay and artificial noise to produce
the diversity.

The negative correlation learning algorithm [11], mentioned
above, trains ANNs simultaneously and interactively, trying to
force different ANNs to learn different aspects of the data by
introducing a correlation penalty term into the error function.

Finally, there are several evolutionary methods where di-
versity is a part of a fitness function and some evolutionary
algorithm is used to search for an accurate ensemble. One
example is the ADDEMUP method, suggested by Opitz and
Shavlik in [24]. A very good survey of methods for producing
diverse base classifiers, including ANNs, can be found in [4].

III. METHOD

As described in the introduction, the overall purpose is
to compare different ways of producing implicit diversity in
ANN ensembles. More specifically, we evaluate four different
techniques; varying the number of epochs, using different
versions of (instance) bagging, varying the architectures and
manipulating the features.

Before the experimentation, each data set was preprocessed
in the following way: first all missing numerical values were
replaced with the mean value of that specific attribute, while
missing categorical values were replaced with the mode val-
ues. Secondly, all categorical attributes were converted into
binary numerical attributes. All ANNs in the study are fully-
connected MLPs utilizing a localist coding (i.e., the number
of output units is equal to the number of classes), and the
training used is the resilient backpropagation (rprop) learning
algorithm. In the first experiment, all ensembles consist of
15 ANNs and in the second experiment there are 51 ANNs in
the ensembles. The base classifiers are always combined using
majority vote.

In the baseline setup, each and every ANN in the ensemble
is trained exactly 150 epochs, no bagging is used (i.e., every
ANN is trained on all training data), all MLPs have identical
architectures with one hidden layer (for details see below) and
there is no manipulation of the features. Naturally, we would
expect this setup to produce fairly accurate but quite similar
(i.e., not diverse) models.

It is well-known that there is no general rule-of-thumb that
will always (or even frequently) find an optimal number of
hidden units in an MLP, based on the data set characteristics. In
practice, some kind of internal cross-validation is instead often
used to determine the number of hidden units. Nevertheless,
there are many rules-of-thumb proposed, and most of them
suggest that the number of hidden units should be somewhere
between the number of input units and the number of output
units, thus resulting in pyramid shaped networks. In this study,
we reluctantly decided to use a rule-of-thumb for determining
the number of hidden units in the baseline setup in order to



simplify the experimentation. More specifically, the number of
hidden units h, in the baseline setup, is calculated using (7).

h =

⌊
#attributes+ #classes

2

⌋
(7)

A. Setups evaluated

Regarding training, we evaluate two different options; either
all ANNs are trained exactly 150 epochs, or the number of
epochs is randomized between 100 and 200 for each ANN.

As described in the introduction, standard bagging utilizes
bags of the same size as the original training set. It is of course,
however, possible to use different sizes for the bags, and the
bag size can even be varied between the base classifiers. Here
we evaluate three settings; no bagging, standard bagging (bag
size 100%) and varying bag sizes where the bag size for each
base classifier is randomized between 70% and 120%.

In the baseline setup, all ANNs have identical architectures
with one hidden layer where the number of hidden units is
determined by the heuristics above. In addition, we evaluate
two more settings where the architecture is slightly random-
ized for each base classifier. In the second setting, all ANNs
still have one hidden layer, but the number of hidden units is
randomized between 0.5h and 1.5h, where h is the number
of hidden units given by the heuristic. In the third setting,
the number of hidden layers is first randomized (one or two)
for each base classifier. ANNs with one hidden layer have
randomized number of hidden units as in the previous setting.
For ANNs with two hidden layers, the number of hidden units
in the first hidden layer is randomized between 0.5h and h,
while the number of hidden units in the second hidden layer is
randomized between 0.3h1 and 0.5h1, where h1 is the number
of hidden units in the first hidden layer.

Regarding manipulating the features, the baseline setup
of course just uses all features when training every base
classifier. In the second setting, the random subspace method
is employed. Here, each base classifier is trained using only
90% of the features. It must be noted that which features to
remove is randomized for each ANN, and that the feature
reduction is performed before the categorical attributes are
converted into numerical binary attributes. The third setting,
finally, uses ANNs with different (randomzed) link structures.
In more detail, starting from a fully-connected MLP, a certain
proportion of all links between input units and hidden units,
between hidden units in different layers and between hidden
units and output units are removed. Exactly which incoming
links that are removed is randomized for each ANN and for
each hidden and output unit. In ANNs with one hidden layer,
40% of the incoming links to each hidden unit, and 20% of the
incoming links to each output units are removed. When there
are two hidden layers, the corresponding parameter values are
60% between the input layer and the first hidden layer, 40%
between the hidden layers, and 20% between the second hid-
den layer and the output layer. This setting is heavily inspired
by the random forest technique, where the features available
for each split when building the random trees is randomized.

It is, however, to the best of our knowledge, a novel way of
introducing implicit diversity in ANN ensembles.1 It must be
noted that the links are removed before training starts, so it is
not a pruning technique but rather a technique for producing
implicit diversity by varying the architectures. For simplicity,
we refer to the resulting ANNs as sparse nets.

All in all, the four settings described above can be combined
into the 54 different setups evaluated here, see Table I below.

TABLE I
EXP. 1 - SETUPS EVALUATED

setting 1 2 3
Training 150 epochs [100, 200] epochs -
Bagging No bagging Bag 100% Bag [70, 120]%
Architecture Identical Random #units Random #layers and units
Features All 90% Sparse nets

In the rest of this paper, the following convention is used for
referring to the different setups: All setups are described using
four digits. Each digit represents, in order, the settings for
training, bagging, architectures and features. As an example,
1-1-1-1 is the baseline setup, while 1-2-2-3 would mean that
all ANNs were trained exactly 150 epochs, that standard
bagging was used, that all ANNs had one hidden layer where
the number of hidden units was randomized, and that links
were randomly removed to produce sparse nets, according to
the procedure described above.

B. Experimental setup

During experimentation, the data sets were randomly split
in 75% training and 25% testing. This was repeated ten times,
so all results are averaged over ten runs. The 30 data sets
used are all well-known UCI data sets [25]. For the sake of
completeness, they are listed here: breast-w, cmc, colic, credit-
a, credit-g, dermatology, diabetes, ecoli, glass, haberman,
heart-c, heart-h, heart-s, hepatitis, ionosphere, iris, labor,
liver-disorders, lung-cancer, lymph, sonar, spect, spectf, tae,
tic-tac-toe, vehicle, vote, waveform, wine and zoo.

IV. RESULTS

Table II below shows the average results over all data
sets for the 54 setups in the first experiment. Starting with
ensemble accuracies, the first reflection is probably that the
differences, when comparing results averaged over all data
sets, are quite small. This, together with the fact that the
mean base classifier accuracies vary a lot more, is actually
a very reassuring observation, confirming the robustness of
ANN ensembles in general. Or, put in another way, it is
obvious that a drop in base classifier accuracy, as a result
of the different techniques, is more than made up for by the
increase in diversity. Looking specifically at the disagreement
results, it is interesting to note that the spread is fairly large,
from 10.6% to 18%. As expected, the most effective way of

1This technique is the basis of a novel algorithm, tentatively named random
brains, which is developed and thoroughly evaluated in an ongoing study.



introducing diversity is bagging, all setups using bagging have
higher average disagreement than any setup not using bagging.

TABLE II
RESULTS FOR 15 ANN ENSEMBLES SORTED ON ENSEMBLE ACCURACY

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
1-2-1-3 .823 .791 .074 .158 .130 1-1-3-1 .819 .800 .087 .121 .140
1-1-3-3 .823 .796 .083 .133 .137 2-1-1-1 .819 .801 .092 .111 .144
1-1-2-3 .823 .804 .089 .111 .141 2-3-1-1 .819 .787 .074 .163 .131
2-1-3-3 .822 .798 .083 .132 .136 1-2-2-1 .818 .786 .075 .162 .132
2-2-1-3 .822 .789 .075 .158 .132 2-1-3-1 .818 .800 .087 .121 .139
1-2-3-3 .822 .781 .071 .175 .131 1-1-3-2 .818 .795 .091 .122 .144
1-3-1-3 .821 .790 .075 .158 .131 1-1-1-1 .817 .803 .093 .107 .144
2-1-2-3 .821 .804 .089 .112 .141 1-3-2-1 .817 .785 .075 .164 .132
2-1-1-3 .821 .805 .091 .106 .142 1-1-1-2 .816 .799 .096 .107 .148
1-2-2-3 .821 .788 .074 .160 .132 2-1-2-2 .816 .796 .096 .112 .148
1-2-1-1 .821 .787 .074 .163 .131 1-1-2-1 .816 .801 .092 .111 .144
2-3-1-3 .821 .789 .075 .160 .131 1-3-3-3 .815 .778 .071 .177 .133
1-3-2-3 .821 .786 .074 .163 .132 1-3-1-2 .815 .783 .077 .164 .135
1-3-1-1 .821 .787 .074 .163 .132 2-3-1-2 .814 .780 .079 .165 .138
2-3-2-1 .821 .786 .075 .163 .133 2-1-3-2 .814 .794 .089 .124 .144
2-2-1-1 .821 .787 .074 .163 .131 2-3-3-2 .814 .778 .075 .173 .136
2-3-3-3 .820 .778 .070 .180 .132 2-2-3-2 .814 .776 .077 .172 .138
1-3-3-1 .820 .783 .072 .172 .131 2-2-1-2 .813 .778 .080 .165 .140
2-2-2-3 .820 .786 .075 .161 .133 1-2-2-2 .813 .776 .079 .169 .139
2-3-2-3 .820 .787 .075 .162 .133 1-3-3-2 .812 .774 .076 .177 .137
1-1-1-3 .820 .804 .091 .107 .143 1-3-2-2 .811 .779 .078 .168 .137
2-3-3-1 .820 .783 .072 .170 .132 1-2-1-2 .811 .777 .079 .165 .140
2-2-3-3 .819 .780 .072 .176 .132 2-2-2-2 .810 .778 .079 .162 .141
2-1-2-1 .819 .801 .092 .111 .144 2-1-1-2 .810 .793 .097 .111 .152
2-2-2-1 .819 .786 .074 .164 .132 1-1-2-2 .809 .791 .096 .113 .152
2-2-3-1 .819 .783 .072 .171 .131 1-2-3-2 .806 .772 .078 .171 .142
1-2-3-1 .819 .783 .072 .171 .131 2-3-2-2 .804 .773 .079 .168 .143

To extend this analysis, Table III below shows the average
ranks for each setup over all data sets.

TABLE III
15 ANN ENSEMBLES - RANKS SORTED ON ENSEMBLE ACCURACY

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
1-1-3-3 20.2 18.2 30.9 37.4 28.1 2-1-1-1 27.9 25.5 32.7 33.9 28.3
1-2-1-3 20.3 23.2 23.7 27.1 19.6 2-3-1-2 28.2 33.0 25.4 21.5 24.7
2-1-3-3 20.9 18.2 30.0 36.8 26.8 1-1-3-2 28.5 20.0 33.1 40.6 29.8
2-1-2-3 21.0 10.9 36.9 45.7 33.8 2-2-1-2 28.6 33.5 26.6 24.1 26.4
1-3-2-3 21.4 28.9 22.9 22.2 23.3 2-3-1-1 28.8 31.9 22.0 21.5 22.4
1-1-2-3 21.6 10.1 36.4 45.7 32.5 1-2-2-2 28.8 34.1 24.4 21.0 24.9
1-2-2-3 22.3 27.0 25.5 24.8 23.6 2-1-2-1 29.0 13.7 38.0 45.1 37.6
2-2-1-3 22.5 25.8 27.5 27.2 25.8 1-3-3-3 29.1 37.2 17.5 14.2 20.2
2-3-2-3 23.5 29.8 24.0 22.9 22.5 1-2-2-1 29.4 31.7 23.4 23.0 25.4
1-2-3-3 23.8 33.9 18.1 15.6 19.0 1-1-3-1 29.4 16.8 35.4 41.9 34.8
2-1-1-3 23.9 9.8 36.8 47.1 33.3 1-3-2-1 29.8 34.6 23.5 19.2 27.1
2-2-2-3 24.3 30.0 26.8 23.8 25.9 2-1-2-2 30.0 16.1 36.6 45.7 33.3
1-3-1-3 24.5 26.8 25.0 26.0 22.4 1-3-1-2 30.2 32.6 25.2 21.9 26.1
2-3-3-3 24.5 37.1 16.1 11.7 19.3 2-1-3-1 30.4 15.8 35.7 41.1 34.5
2-3-1-3 24.5 27.4 24.4 24.2 22.0 1-1-1-1 30.8 12.8 38.9 47.1 38.8
2-2-3-3 24.8 35.1 20.4 16.0 23.0 2-1-3-2 30.8 21.6 34.8 40.6 32.9
1-3-3-1 24.9 37.5 18.7 11.3 22.0 2-2-3-2 30.9 38.1 22.1 16.3 23.0
2-3-2-1 24.9 32.7 24.3 21.2 25.9 1-3-3-2 31.0 36.5 19.1 14.7 20.6
1-1-1-3 25.3 10.2 38.1 47.2 34.7 2-3-3-2 31.0 36.6 24.3 12.9 25.9
1-2-3-1 25.8 37.5 18.9 12.4 23.0 1-1-2-1 31.2 14.5 37.9 45.3 38.4
1-2-1-1 26.0 29.1 24.4 23.4 26.6 2-2-2-2 32.3 34.5 29.1 23.2 30.7
2-2-1-1 26.3 29.3 23.3 23.5 26.6 1-3-2-2 32.8 35.5 22.2 19.8 24.8
1-1-1-2 26.4 15.3 39.3 46.9 34.7 1-2-1-2 33.2 35.3 26.3 22.6 29.1
1-3-1-1 26.6 32.2 23.8 20.2 26.6 1-2-3-2 33.5 38.6 26.0 16.4 29.2
2-2-2-1 26.9 31.3 25.0 21.1 26.9 2-1-1-2 34.5 20.9 38.2 44.9 35.7
2-2-3-1 27.0 36.8 21.0 12.2 23.6 1-1-2-2 35.0 22.6 38.5 44.0 36.5
2-3-3-1 27.0 38.2 20.2 12.2 23.8 2-3-2-2 39.1 39.5 26.7 18.9 29.1

Again, the first impression is probably that the differences
are fairly small. Looking at ensemble accuracies, the best
average rank is 20.2 and the worst 39.1 (with 54 setups the
average is of course 27.5). Nevertheless, it is very interesting
to observe that the most important setting is clearly the last;
i.e., how the features are manipulated. As a matter of fact, the
best 10 setups all use the sparse nets setting. At the same time,
11 of the worst 12 setups all use the random subspace setting.
Specifically comparing all setups against the baseline, Table
IV below shows the number of wins for the different setups.

TABLE IV
15 ANN ENSEMBLES - WINS AGAINST BASELINE SETUP

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
1-1-3-3 22.5 13.5 27 23.5 25 2-3-2-1 17.5 1 29 30 26.5
1-2-1-3 22 7 28 29 27 2-3-3-1 17.5 1 27 29 27
1-3-2-3 22 2.5 29 29 25 2-2-2-1 17 1 28 30 26.5
2-1-2-3 22 17 24.5 13.5 24.5 2-2-3-1 17 1 28 29 27
1-1-2-3 21.5 18.5 23 14 23 2-3-1-3 17 5.5 28 29 25
2-1-1-3 21 18.5 18 13.5 21 1-1-3-2 16.5 13 14.0 26 16
2-1-3-3 20.5 15 27 23.5 27 1-1-3-1 16 8 26.5 27 23
1-2-3-1 20 1 28 29 27 1-3-2-1 16 0.5 26.5 30 26.5
1-3-1-3 20 4.5 27 29 25.5 2-3-1-2 15.5 5 22 29 18
1-2-2-1 19.5 1.5 28 30 26 1-2-2-2 15 5.5 20 30 19
1-1-1-3 19 17 20 13 24 1-3-1-2 15 7.5 22 29 20
1-2-3-3 19 2 28 29 26 2-1-1-1 15 14 15.5 15 16
2-2-1-3 19 5 28 29 26 2-1-2-2 15 15 9 15 13.5
2-2-2-3 19 1.5 29 29 28 2-1-3-2 15 12 17 26 16
2-3-3-3 19 2.5 28 29 25 2-1-3-1 14.5 6 26.5 28 25
1-2-1-1 18.5 3.5 29 30 28 2-3-3-2 14 7 24 29 19.5
1-2-2-3 18.5 3.5 28 29 27 1-1-2-1 13.5 12 16.0 20.5 15.5
1-3-1-1 18.5 1.5 29 30 28 1-3-3-2 13.5 6 21.5 29 19
2-2-1-1 18.5 1 29 30 28 2-2-3-2 13 5.5 22 29 19
2-3-2-3 18.5 2.5 28 29 26.5 1-2-3-2 12.5 5.5 23 29 19
1-3-3-1 18 1 27 29 27.5 2-2-2-2 12 4 22 30 18
2-2-3-3 18 3 28 29 26 1-3-2-2 11.5 4 23 30 20
1-1-1-2 17.5 15 9 12.5 13 1-1-2-2 11 11 13 15 13
1-3-3-3 17.5 3 28 29 27 1-2-1-2 11 6 22 29 19
2-1-2-1 17.5 11.5 19 24 17 2-1-1-2 10 13.5 11 17 13
2-2-1-2 17.5 5 21 29 20 2-3-2-2 9 4 21 29 15.5
2-3-1-1 17.5 2 29 29 27

Over 30 data sets, a standard sign test requires 20 wins for
a significant difference. In Table IV, a bold and underlined
number indicates that the setup is significantly better (has
higher accuracy or is more diverse) than the baseline setup,
while an italicized and underlined number indicates that the
baseline setup was significantly better.

Despite the fact that a large majority of all the setups
outperformed the baseline setup, only nine produced signif-
icantly more accurate ensembles. Of these nine setups, all but
one utilize the sparse net setting. Looking at base classifier
accuracy and the different diversity measures, a majority of
the setups have significantly less accurate base classifiers,
but also significantly higher diversity. This is probably what
should have been expected, but it is still noteworthy to see
that all methods evaluated were indeed capable of increasing
the diversity, but almost always at the expense of less accurate
base classifiers. Finally, it is particularly interesting that four
of the best setups, all utilizing the sparse nets setting but no
bagging, obtained their high ensemble accuracy without an
increase in disagreement, compared to the baseline setup. On



the other hand, for these setups, the base classifier accuracy
was comparable, or even slightly better, than the baseline
setup. Most importantly, the diversity was significantly higher
when measured using a more informed criterion. This is, of
course, a very strong indicator that the diversity produced by
that method is effective for increasing ensemble accuracy.

Since bagging is arguably the most important basic ensem-
ble creation method, Table V below shows the number of wins
for the different setups against bagging.

TABLE V
15 ANN ENSEMBLES - WINS AGAINST BAGGING

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
1-2-1-3 19.5 18 15 11.5 20.5 2-2-1-2 14 13 9 12 11
1-1-2-3 18.5 25.5 4 2 7 2-2-2-1 14 14.5 15 19 14
2-3-2-3 18.5 13 13.5 13 15 1-2-2-1 13.5 14.5 12 18 13
1-2-2-3 18 15 11.5 11.5 12.5 2-1-2-2 13.5 22 2 1 4
1-1-3-3 17.5 19 8 6.5 7.5 2-2-3-1 13.5 7 21 27 16.5
2-1-2-3 17.5 24.5 5 2 7 2-3-1-2 13.5 15.5 10 14 13
2-1-3-3 17.5 20.5 6 7 10.5 1-1-3-1 13 25 2 1 4
1-3-1-3 17 16.5 13 13.5 17 1-2-2-2 13 14 11 17 12.5
2-2-1-3 17 17.5 11.5 12 14 1-3-3-2 13 12 12 19 15.5
2-2-3-3 17 12 18 16 14.5 1-3-3-3 12.5 10.5 20.5 18.5 15.5
1-2-3-3 16.5 13 22 17.5 16.5 2-1-2-1 12.5 29 1 0 3
1-3-3-1 16.5 4.5 25.5 27 16.5 2-1-3-2 12.5 19 2 3 7
2-1-1-3 16.5 25.5 2 2 5 1-1-3-2 12 20.5 2 2 6.5
2-2-2-3 16.5 13.5 13 13.5 15.5 1-3-2-1 12 10 13 22.5 13
2-3-1-3 16.5 14.5 14 11.5 18 2-1-3-1 12 25.5 2 1 5
2-3-2-1 16.5 13 16.5 18.5 15 2-3-1-1 12 13.5 16.5 21.5 15.5
1-1-1-3 16 25.5 3 2 6 2-3-3-2 12 11 14 25 15
1-3-2-3 16 15 16 14 15 2-2-2-2 11.5 14 11 13.5 12
2-3-3-3 16 9.5 22 22 16 2-2-3-2 11.5 9 13.5 22 13
1-3-1-1 15.5 10.5 13.5 23.5 13 1-1-2-1 10.5 28 2 0 2
2-2-1-1 15 18 16 15.5 17.5 1-2-1-2 10.5 12 8.5 12 10
1-2-3-1 14.5 8 23 26.5 17.5 1-3-2-2 10.5 12 8 15 11
1-3-1-2 14.5 14 11 14 14 1-1-2-2 10 20 2 2 6.5
2-3-3-1 14.5 4 20 27 15 1-2-3-2 10 10 12 21 12
1-1-1-2 14 22 4 1 8 2-1-1-2 10 19 2 2 5
2-1-1-1 14 15 10 11 14 2-3-2-2 7.5 8.5 8 19 7

First of all it can be noted that standard bagging actually
fares pretty well. No setup was significantly better than bag-
ging, and a majority of setups lose more data sets than they
win against bagging. There are, however, several setups that
outperform bagging, and almost all of them utilize the sparse
nets setting. In addition, looking at it the other way around,
all but one setups using the sparse nets setting, won at least
16 data sets against bagging.

Summarizing Experiment 1, all techniques for producing
diversity were successful. Specifically, even if base classifier
accuracies decreased, the resulting ensembles were most often
more accurate than the baseline setup. The only exception
was the random subspace setting, where the resulting base
classifier accuracies actually were too low for the diversity to
compensate for. Comparing the different settings, it is obvious
that using sparse nets was the most successful. As a matter
of fact, almost all top ranked setups utilized the sparse net
setting.

Turning to Experiment 2, where the ensembles consist of
51 ANNs, Table VI below shows the averaged results over all
data sets.

TABLE VI
RESULTS FOR 51 ANNS ENSEMBLES, SORTED ON ENSEMBLE ACCURACY

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
1-2-1-3 .826 .790 .072 .156 .132 2-3-1-1 .822 .786 .070 .164 .132
2-2-3-3 .826 .781 .067 .176 .131 1-1-3-1 .822 .800 .084 .121 .139
1-3-3-3 .825 .779 .066 .180 .131 1-3-2-1 .821 .785 .070 .166 .132
2-1-2-3 .824 .803 .087 .111 .141 2-2-2-2 .821 .783 .075 .162 .136
1-3-1-3 .824 .789 .071 .160 .131 2-1-1-3 .821 .804 .088 .108 .142
1-2-2-3 .824 .789 .071 .160 .131 2-1-3-1 .821 .800 .084 .121 .139
1-2-3-3 .824 .781 .067 .176 .131 2-1-2-1 .820 .801 .089 .112 .144
2-1-3-3 .824 .797 .080 .132 .137 2-3-2-2 .819 .783 .074 .163 .135
1-1-3-3 .824 .797 .080 .132 .137 1-1-1-2 .819 .798 .093 .108 .148
2-3-3-3 .824 .779 .067 .178 .131 1-1-2-1 .819 .800 .089 .112 .144
1-3-2-3 .823 .787 .070 .163 .131 2-1-1-1 .817 .802 .090 .109 .144
2-3-1-3 .823 .787 .071 .160 .133 1-1-1-1 .817 .802 .090 .107 .145
2-2-1-3 .823 .790 .072 .157 .132 1-2-3-2 .817 .778 .072 .173 .136
1-1-1-3 .822 .805 .088 .106 .142 1-1-3-2 .817 .794 .088 .122 .144
2-2-3-1 .822 .784 .069 .169 .131 2-1-2-2 .816 .796 .093 .113 .147
1-2-2-1 .822 .787 .071 .162 .132 2-2-1-2 .816 .778 .076 .165 .140
1-3-1-1 .822 .786 .070 .165 .131 1-3-1-2 .816 .778 .074 .167 .139
1-3-3-1 .822 .783 .068 .172 .131 2-1-3-2 .816 .794 .086 .124 .144
2-3-3-1 .822 .783 .068 .172 .131 1-3-3-2 .815 .771 .072 .179 .139
2-3-2-1 .822 .786 .070 .165 .131 2-3-3-2 .815 .776 .073 .172 .138
2-2-2-3 .822 .788 .071 .160 .132 1-2-2-2 .815 .776 .076 .168 .140
2-2-2-1 .822 .787 .071 .162 .132 1-3-2-2 .814 .775 .074 .170 .139
1-1-2-3 .822 .803 .087 .112 .141 1-1-2-2 .812 .791 .093 .113 .152
2-2-1-1 .822 .788 .072 .159 .133 2-3-1-2 .811 .773 .076 .170 .142
2-3-2-3 .822 .787 .070 .163 .131 2-2-3-2 .811 .774 .072 .174 .139
1-2-3-1 .822 .785 .068 .169 .131 2-1-1-2 .810 .793 .095 .110 .153
1-2-1-1 .822 .787 .072 .160 .133 1-2-1-2 .808 .771 .076 .170 .144

Comparing this to the results in Table II, it can be noted
that the ensemble accuracies are, as expected, slightly higher
when there are more base classifiers. As a side note, since both
double fault and disagreement are pairwise measures, they are,
just like the mean base classifier accuracy, insensitive to the
size of the ensemble. Or, put in another way, the increased
ensemble accuracy when using more base classifiers can not
be explained using these two diversity measures. Difficulty, on
the other hand, has the proper behavior since it decreases (i.e.,
shows an increase in diversity) for the larger ensembles.

Looking at the overall ranks in Table VII below, the picture
is quite similar to Experiment 1. One important difference is,
however, that the baseline setup here is one of the worst. So,
when using larger ensembles, diversity appears to become even
more important; i.e., larger ensembles favor using less accurate
but more diverse base classifiers. This is also evident from the
fact that several of the worst setups (with regard to ensemble
accuracy) are ranked among the last in diversity. Looking at
the specific settings, the use of sparse nets was again the most
successful. Remarkably, 17 of the 18 setups using the sparse
net setting were among the best 18 over all. Using the random
subspace setting still appears to be the worst choice, but this
is less apparent for the larger ensembles. Actually, combining
the random subspace setting with bagging obtained relatively
accurate ensembles.



TABLE VII
51 ANN ENSEMBLES - RANKS SORTED ON ENSEMBLE ACCURACY

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
2-1-3-3 20.7 18.2 32.4 37.6 29.5 2-3-3-1 27.2 38.4 18.8 10.0 22.7
1-2-1-3 20.7 24.0 26.0 29.0 20.6 1-3-2-1 27.5 35.6 23.4 16.9 28.1
2-2-3-3 20.7 34.5 16.4 14.8 17.9 1-2-2-2 27.7 34.9 26.0 22.3 26.5
2-1-2-3 21.5 10.1 37.3 45.9 35.1 2-1-1-3 27.8 9.5 38.1 47.6 35.1
1-3-1-3 21.5 27.6 25.3 24.0 22.5 2-2-2-1 27.8 30.9 24.4 23.9 26.0
1-1-3-3 22.3 17.3 32.3 38.3 29.8 1-1-3-1 27.9 17.2 34.2 40.7 33.4
1-2-3-3 22.3 34.9 18.7 15.5 20.4 1-2-1-1 28.3 31.3 26.6 24.7 28.4
1-3-3-3 22.4 37.1 15.2 11.1 17.8 1-1-1-2 28.9 15.8 39.6 46.7 35.7
2-3-3-3 22.5 37.1 16.1 13.2 17.5 2-3-2-2 29.2 32.1 25.0 21.6 24.7
1-2-2-3 22.9 26.8 26.3 24.9 21.9 1-3-2-2 29.7 37.0 23.4 18.3 24.6
2-3-1-3 23.5 29.2 25.8 24.4 24.3 2-1-3-1 29.8 16.6 34.3 40.7 34.8
1-3-2-3 23.7 30.6 23.3 21.4 21.4 1-3-1-2 29.9 34.8 20.4 18.8 21.6
1-1-1-3 24.3 8.0 38.9 47.9 36.4 1-3-3-2 29.9 41.5 19.0 10.7 21.7
2-2-2-3 24.4 27.7 26.9 25.5 23.5 2-1-3-2 30.0 22.5 34.4 40.0 32.1
2-3-2-3 24.7 29.3 21.7 21.1 20.4 1-2-3-2 31.2 36.0 23.7 15.4 25.5
2-2-1-3 24.8 25.2 28.1 28.6 23.2 2-1-2-1 31.4 13.3 37.6 45.0 38.7
1-3-3-1 25.2 39.4 16.7 9.7 21.2 1-2-1-2 31.4 35.7 26.6 20.4 30.2
1-1-2-3 25.4 10.6 36.1 44.7 33.5 1-1-3-2 32.1 22.1 33.6 40.1 30.3
2-3-2-1 25.9 33.3 22.1 18.2 25.1 2-3-3-2 32.2 39.3 21.8 13.7 23.1
1-2-2-1 26.2 32.1 26.4 22.4 28.3 2-1-2-2 32.4 15.5 36.8 45.3 34.0
2-2-3-1 26.2 37.7 19.6 13.3 22.8 1-1-2-1 32.8 13.8 37.3 44.8 38.5
2-2-1-2 26.9 33.6 27.2 24.6 25.7 2-3-1-2 32.9 36.8 24.1 20.1 24.6
2-3-1-1 26.9 33.8 23.0 20.1 26.0 2-2-3-2 33.5 37.5 22.1 16.1 25.3
2-2-1-1 27.0 29.4 26.4 25.9 27.2 2-1-1-1 33.6 12.6 38.1 46.6 38.5
2-2-2-2 27.0 32.2 28.1 23.7 27.8 1-1-1-1 34.9 12.9 38.7 47.5 39.1
1-3-1-1 27.1 32.9 23.0 19.5 25.6 1-1-2-2 35.3 21.5 38.9 44.3 37.4
1-2-3-1 27.1 36.5 19.5 13.4 22.6 2-1-1-2 36.3 21.1 39.8 46.1 37.2

The results in VIII below show that when using the larger
ensembles, a majority of the setups evaluated produced sig-
nificantly more accurate ensembles, compared to the baseline
setup.

TABLE VIII
51 ANN ENSEMBLES - WINS AGAINST BASELINE

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
2-1-2-3 25 18.5 22.5 14.5 23 1-3-1-1 20 1 30 30 28
1-1-3-3 24.5 16 25.5 23 27 2-2-2-3 20 4 30 29 28
1-1-3-1 24 5.5 29 29 30 2-3-1-3 20 4 29 29 28
1-2-1-3 24 4 29 29 28 1-2-2-2 19 3.5 22 30 19
1-3-1-3 23.5 5.5 30 29 28 2-1-1-1 19 15 19.5 19 19
2-1-3-1 23.5 8.5 30 29 30 2-3-1-1 19 0.5 30 30 28
2-1-3-3 23 13.5 28 23.5 27.5 1-2-1-1 18.5 0.5 30 30 28
1-1-2-3 22.5 18 24 16 24 1-3-2-1 18 1 29 30 27
1-2-3-3 22.5 2.5 30 29 27 2-2-1-2 18 5.5 22 29 18.5
1-3-3-3 22.5 3 30 29 25.5 1-1-2-1 17.5 15 25 23.5 22.5
2-2-3-3 22.5 2.5 29 29 26 1-3-2-2 17 3 22 30 18.5
1-1-1-3 22 20 21 14 23.5 2-3-2-2 16.5 7 23 30 19
1-2-2-3 22 4.5 30 29 28 1-3-1-2 16 5 23 30 19
1-3-3-1 22 1 29 29 28 1-1-1-2 15.5 15 9.5 13 12
2-3-2-1 22 1 30 30 28 1-3-3-2 15.5 3 21 29 19
2-3-2-3 22 5.5 29.5 29 27 2-2-2-2 15 6 25 30 21
2-1-2-1 21.5 15 22 23 20 2-3-1-2 15 5 20 29 18
2-2-1-3 21.5 3 30 29 28 1-2-3-2 14.5 6.5 24 29 18
2-1-1-3 21 18.5 22.5 13 22.5 2-1-3-2 14.5 12 19.5 27 16
2-2-1-1 21 1 29 30 28 2-3-3-2 14.5 5.5 23 29 18
2-2-3-1 21 1 30 29 28 1-2-1-2 14 5 20 29 16
2-3-3-1 21 1 30 29 28 1-1-3-2 13 12 15.5 27 15.5
2-3-3-3 21 2.5 29 29 26 2-1-2-2 13 14 9 14 12
1-2-2-1 20.5 1 30 30 27 1-1-2-2 12.5 11 12 14 11
1-3-2-3 20.5 4 29 29 27 2-2-3-2 12 6 23 29 17.5
2-2-2-1 20.5 0.5 30 30 27 2-1-1-2 11 13 10 13 12
1-2-3-1 20 1 29 29 28

This is obviously an excellent result for the general strategy

of using techniques producing implicit diversity. It may be
noted that the only setup with significantly higher base classi-
fier accuracy than the baseline setup is 1-1-1-3, i.e., the only
difference is the use of the sparse nets setting. This is a clear
indication that individual sparse nets are able to generalize
well.

The direct comparison with standard bagging in Table IX
below shows that with larger ensembles, a majority of the
setups are at least as good as bagging. In addition, several
setups actually obtain significantly higher ensemble accuracy
than bagging.

TABLE IX
51 ANN ENSEMBLES - WINS AGAINST BAGGING

setup eAcc mBAcc Diff Dis DF setup eAcc mBAcc Diff Dis DF
1-3-1-3 22 17.5 22 16.5 22 2-2-1-2 15.5 13.5 11 13 12.5
2-1-2-3 21 27.5 5 2 8.5 2-2-2-2 15 13 12.5 15 13
2-2-3-3 21 13.5 23 20 18.5 2-1-2-1 14.5 29 1 1 2
1-2-1-3 20.5 20.5 16.5 12.5 21.5 2-2-2-1 14.5 18 16 15 18.5
1-3-3-1 20 5.5 26.5 28 22 1-1-1-2 14 22.5 4 1 8
2-1-3-3 20 20.5 7.5 7 8.5 1-2-2-2 14 12 9 14 11.5
2-3-1-3 20 16.5 18 15 18 1-3-3-2 14 11 13.5 23 14
2-3-3-3 20 11 23 22.5 19 2-1-1-3 14 27.5 4 2 6.5
1-2-2-3 19 18.5 19 14 20.5 1-1-3-1 13.5 26 2 1 5.5
1-3-2-3 19 15.5 21 16 17 2-3-1-1 13.5 13 25 25 23
1-3-3-3 19 12 27 23.5 19.5 1-1-2-1 13 29 2 1 2
1-3-1-1 18 12 27.5 27.5 24 1-2-1-2 13 13 12 16.5 12.5
2-2-1-3 18 18 15.5 14 19 1-3-1-2 13 14 11 16.5 12.5
1-1-3-3 17.5 21.5 6 6 8.5 1-3-2-2 12.5 11.5 13 17 13
1-2-2-1 17.5 14.5 22 21.5 20 2-1-3-2 12.5 20 4 2 10
2-2-2-3 17.5 17.5 17 14 18 2-3-1-2 12.5 13 10 15 12.5
2-2-3-1 17.5 6 26 28 22 2-3-2-2 12.5 13 11 15 12
2-3-2-3 17.5 16.5 23 16 20 2-3-3-2 12.5 8.5 14 22 13.5
1-1-1-3 17 29 4.5 1 6 1-1-3-2 12 20 3 1 7.5
1-1-2-3 17 27.5 4 2 8 1-2-3-2 12 12 16.5 21.5 13.5
1-2-3-1 17 7 26.5 27 24 2-1-2-2 12 24 3 1 5.5
1-2-3-3 17 13.5 25.5 18.5 19 2-2-3-2 12 11 15 19.5 13
1-3-2-1 16.5 8 25 27 20 2-1-1-1 11.5 30 1 0 2
2-3-2-1 16 13.5 27 25.5 22.5 2-1-3-1 10 26.5 2 1 4.5
2-3-3-1 16 5 27 29 21 2-1-1-2 9 20 2 2 5
2-2-1-1 15.5 21 13.5 13.5 17 1-1-2-2 8 20 2 2 4

Again, the sparse nets setting is the most successful, and
it is very interesting to see that it can outperform bagging
either by using more accurate, but less diverse ANNs (e.g., 2-
1-2-3) or by adding more diversity to bagging (e.g., 2-3-3-3).
Moreover, it is also possible to outperform bagging by further
increasing the diversity, for instance by using randomized bag
sizes with or without varying architectures (e.g., 1-3-1-1 or 1-
3-3-1). So, when using more base classifiers, standard bagging
is still a strong option, but as demonstrated here, there are a
number of ways to obtain even more accurate ensembles, still
just targeting diversity implicitly.

Table X below, finally, shows the Spearman’s rank correla-
tion coefficients between the different measures.



TABLE X
SPEARMAN’S RANK CORRELATION COEFFICIENTS

15 ANN ensembles 51 ANN ensembles
eAcc mBAcc Diff Dis eAcc mBAcc Diff Dis

mBAcc 0.26 -0.09
Diff 0.15 -0.88 0.39 -0.91
Dis -0.02 -0.96 0.96 0.28 -0.96 0.98
Df 0.35 -0.74 0.94 0.85 0.54 -0.81 0.94 0.89

For the smaller ensembles, only the two more informed
diversity measures are positively correlated with ensemble
accuracy. For the larger ensembles, however, all three diversity
measures obtain fairly strong and positive correlations with the
ensemble accuracy. At the same time, mean base classifier ac-
curacy is only positively correlated with the ensemble accuracy
for the smaller ensembles. Consequently, these results confirm
the observation that diversity is relatively more important
for the larger ensembles. It is also interesting, but of course
expected, to see that mean base classifier accuracy is strongly
and negatively correlated with all diversity measures, and that
all three diversity measures have strong positive correlations
with each other.

V. CONCLUSION

In this paper, we have evaluated several means to produce
implicit diversity in ANN ensembles. From the results, it
is obvious that although all settings succeeded in produc-
ing diversity, the predictive performance of the resulting
ensembles varied greatly. Most importantly, a majority of
all the setups evaluated clearly outperformed the baseline
setup, demonstrating that the increase in diversity produced
by the different methods was generally beneficial for ensemble
accuracy. Especially when using larger ensembles, a majority
of the setups evaluated produced significantly more accurate
ensembles than the baseline setup. In addition, several setups
also outperformed standard bagging. As a matter of fact,
for the larger ensembles, a majority of the setups were at
least as good as bagging, and a number of setups even
obtained significantly higher ensemble accuracy than bagging.
The levels of increased diversity produced by the methods
evaluated in this study normally resulted in increased ensemble
accuracy, i.e., diversity was produced without lowering the
base classifier accuracy too such extent that the ensemble was
weakened. The overall conclusion is thus that the produced
diversity more than compensated for the decrease in base
classifier accuracy. The analysis also showed that diversity is
actually more important for the larger ensembles. Comparing,
finally, the individual settings, the novel way of producing
diversity by using ANN base classifiers with different and
slightly randomized link structures, was generally the most
successful, while using randomized feature sets resulted in the
least accurate ensembles.
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