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Abstract—Digital preservation deals with the problem of re-
taining the meaning of digital information over time to ensure
its accessibility. The process often involves a workflow which
transforms the digital objects. The workflow defines document
pipelines containing transformations and validation checkpoints,
either to facilitate migration for persistent archival or to extract
metadata. The transformations, nevertheless, are computationally
expensive, and therefore digital preservation can be out of
reach for an organization whose core operation is not in data
conservation. The operations described the document workflow,
however, do not frequently reoccur. This paper combines an
implementation-independent workflow designer with cloud com-
puting to support small institution in their ad-hoc peak com-
puting needs that stem from their efforts in digital preservation.

Index Terms—Digital Preservation, Cloud Computing

I. INTRODUCTION

Digital preservation (DP) combines policies, strategies and
actions to ensure that digital objects remain authentic and
accessible to users and systems over a long period of time,
regardless the challenges of component and management
failures, natural disasters or attacks [1]. This includes the
preservation of materials resulting from digital reformatting,
but particularly of information that is born-digital and has no
analog counterpart.

While DP has a vast literature exposing the wide array
of associated issues, here we would like to focus on only
three aspects: migration and transformation, scalability, and
reusability.

The first aspect refers to the problem of keeping the content
of legacy file formats accessible. This problem is most promi-
nent with proprietary file formats for which documentation is
not available. Once the vendor stops support for the associated
software products, these files face digital obsolescence. A
common solution to the problem is migration in which older
formats are transformed to a more persistent format.

Secondly, dynamic collections and environments for DP
require technical scalability to face technology evolution.
Existing static collections, for instance, a digitized historical
archive, where no new items will be added, will have a
fixed data size. Although it will not be necessary to add
new components to increase the storage capacity, it may be
necessary to replace components or transform the objects

in the collection. These requirements ask for scalability [2].
Achieving this of DP may require specific investments in an
infrastructure for storing, maintaining, and managing data.
Such costs can be prohibitive for organizations whose core
business is not data conservation and that do not have a
considerable budget for investments in information technology.

The third important aspect of DP that we would like focus
on is to enable the reuse of digital content. Reuse of digital
content covers its subsequent verification and its exploitation
with a novel purpose, potentially by new consumers. Since
consumers are unable to refer back to the creators, reuse
of preserved digital objects depends on proper descriptions
provided through the archive [3]. In this sense, reuse of
digital content asks for metadata on both the content and
how it was transformed to its most recent form. This is
where document process preservation helps, which provides
an architecture-independent description of the intent behind a
document process [4].

The above three points are not unrelated. Migration and
transformation can be regarded as part of a larger problem
described in the third point: we need to preserve not just the
documents, but also how they were processed. The second
point is, of course, crucial: let it be migration or metadata
extraction, these operations are computationally expensive.

SHAMAN (Sustaining Heritage Access through Multivalent
ArchiviNg) is an integrated project, co-funded by the European
Commission under the seventh RTD Framework Programme.
The aim of this project is to investigate the long-term preser-
vation of large volumes of digital objects in a distributed
environment, by developing a preservation framework that
is verifiable, open and extensible [5]. SHAMAN is focusing
its research on: integrating data grid, digital library and per-
sistent archive technologies; developing support for context
representation and annotation, with deep linguistic analysis
and corresponding semantics; and modeling of preservation
processes [6]. In this paper, we describe a system developed
in SHAMAN which combines a document process designer
for digital preservation with scalable computational resources
that are available for small organizations: cloud computing.

This paper is organized as follows. Section II outlines the
importance of document processing pipelines in digital preser-
vation and the need to preserve the process itself. Document



processing, however, is both data and compute-intensive, a
possible way out is using the cloud; the problem is detailed
in Section III. Bringing together these two themes, document
workflows and cloud computing, we propose a solution that
works for organizations with limited computational resources
or restricted IT budget in Section IV by moving the processes
related to preservation to the cloud. Section V further discusses
the implementation and reveals some experimental results.
After the discussion, a section on related work highlights in
what ways our approach is different from existing similar work
(Section VI), Section VII discusses our planned future research
efforts, and finally Section VIII concludes the paper.

II. WORKFLOWS AND DIGITAL PRESERVATION

Preserving the intent behind the activities and projects that
led to the production of digital data can be as meaningful
and important in the long term as preserving the digital data
themselves. Indeed, an important goal of digital preservation
is to enable reuse of digital content by securing the long term
understanding of the intent behind the preserved data.

Production and reuse of digital content from the archive
do not coincide, as reuse may have a novel purpose or may
operate in a totally different environment than was available at
production time. Preservation must bridge gaps in time, space,
semantics, knowledge, objectives and other dimensions. This
is why the description of preserved digital objects must include
means to understand the context in which the data was initially
produced and used. The context is not only defined by the
digital objects themselves, but also by the processes, in which
they were created, ingested, accessed and re-used.

A. The Xeproc Domain-Specific Language

The Xeproc Domain-Specific Language (DSL), developed
within SHAMAN, addresses precisely the need to capture
the intent behind document processes, so that they can be
preserved and reused in future unknown infrastructures. To that
end, Xeproc preserves not only production processes, but also
instrumented specifications of a document processing project.

Xeproc technology can be used to build a wide range of
applications based on document processing, including trans-
formation, extraction, indexing and navigation. It can be easily
integrated with more global business processes and customized
to match specific requirements and infrastructures. In the spirit
of service-oriented architecture (SOA), Xeproc embeds refer-
ences to services and documents and provides loose coupling
not only to services but also to data resources, with respect to
both their location and format.

These capture the intent behind the workflow irrespective
of the implementation at a given point in time (see Figure
1). These abstract representations are preserved, so that the
Xeproc models can be seen as independent specifications to be
instantiated and deployed over time and as technology evolves.

Available on Eclipse 3.5.1 under the Eclipse Public Li-
cense1, Xeproc combines a DSL, an associated graphic de-
signer and extension application programming interfaces. A

1http://marketplace.eclipse.org/content/xeproc

DSL is a programming language or specification language
dedicated to a particular problem domain. The associated
designer lets one define and design document processes while
producing an abstract representation that is independent of the
implementation.

B. XML processing pipelines

XML is ideally suited to representing the logical structure of
documents (e.g. titles, sections, chapters, paragraphs, reading
flow) independently of their visual rendering. XML is also able
to represent the semantics or meaning of documents, by explic-
itly encoding the various elements that make up the document,
such as authors, dates, organization or product names, financial
data, etc. It hence provides a natural bridge between databases
and content. By explicitly encoding a document’s structure
and meaning, XML opens up the possibilities for document
lifecycle, including content reuse and repurposing, quality
assurance and security. The sheer volume and heterogeneity
of document collections (numerous authoring systems and
proprietary formats such as PDF, PS, Word, and TIFF) as
well as the nature and characteristics of the information to
be encoded (data-oriented documents such as purchase orders,
complex and implicit structures such as maintenance manuals)
makes document conversion to XML a complex and delicate
task.

XML processing often involves transformations from one
XML format to another. Extensible Stylesheet Language
Transformations (XSLT) is a declarative, XML-based language
used for describing these transformations [7]. For instance,
XSLT is often used to convert XML data into HTML or
XHTML documents for display as a web page. In the context
of DP, the content may be stored in a richly annotated XML
format, and when the content is presented to the user, an XSLT
transformation can be used to render the page in a legible
format. An XSLT processor is an algorithm takes an XML
file and an XSLT file, and outputs the transformed XML file.
An XSLT processor may be a stand-alone program, or a library
to use from a wide range of programming languages.

From an automatic processing point of view, a great advan-
tage of XML is that the format distinguishes the concepts
of syntactic correctness and of validity with respect to a
document type definition. Syntactic correctness is inherent in
the language, while further restrictions on the elements and
attributes can be defined, and a document can be validated
against these. The validity is verified via XML schemas,
which are descriptions of types of XML documents, typically
expressed in terms of constraints on the structure and content
of documents of those types, above and beyond the basic
syntactical constraints imposed by XML itself. All XML
documents must be syntactically correct (that is, they must
be well-formed), but it is not required that a document be
valid unless the XML parser is validating, in which case the
document is also checked for conformance with its associ-
ated schema. Documents are only considered valid if they
satisfy the requirements of the schema which they have been



Fig. 1. Document process designer showing a process to extract table of contents

associated with. These requirements typically include such
constraints as:

• Elements and attributes that must/may be included, and
their permitted structure;

• The structure as specified by a regular expression syntax;
• How character data is to be interpreted, e.g. as a number,

a date, a URL, a Boolean, etc.
Within the context of SHAMAN, Xeproc has been specif-

ically used to model XML processing pipelines and XML
validation checkpoints. Validation checkpoints may be defined
in any of several schema languages such as Document Type
Definition or Relax NG. Those XML processing pipelines
focus on identifying structural metadata describing the doc-
ument organization. The pipelines have been designed and
customized for each of the three following collections:

• DNB collection of electronic PhD theses: The Deutsche
Nationalbibliothek (DNB) holds a continually growing
collection of currently more than 95,000 PhD theses
in electronic form originally provided by German uni-
versities. These theses are fully processed for library
and preservation purposes and constitute an important
subcollection of the overall digital collection at DNB. All
objects in this collection are text documents, more than
95% of them are PDF files.

• Digitised Collections from the Göttinger Digital-
isierungszentrum: The Göttinger Digitalisierungszentrum
(GDZ) is one of the two German competence centres for
digitization and has digitized over 5 million pages across
a variety of projects.

• INEX collections: INEX (Initiative for the Evaluation of
XML) promotes the evaluation of focused retrieval by
providing large test collections of structured documents,
uniform evaluation measures, and a forum for organiza-
tions to compare their results. The 2009 Book structure,
track builds on a collection of digitized books, provided
by Microsoft Live Book Search and the Internet Archive
(for non-commercial purposes only). The corpus consists
of over 50,000 digitized out-of-copyright books.

The pipelines eventually produce metadata in Metadata
Encoding and Transmission Standard (METS, [8]) addressing
various aspects of the document collections, namely:

1) Extraction of logical organization: logical elements re-
flecting the document organization are marked-up (table
of contents, chapters);

2) Extraction of the page numbering (for book navigation
purpose);

3) Extraction of illustrations and associated captions;
4) Generation of an XML file for indexing purpose and

reflecting the logical organization of the books.

C. XML processing pipeline deployment

The resulting Xeproc logical and persistent descriptions,
when associated with the accurate components, are interpreted
or translated into any SOA orchestration language to produce
logically structured documents. For instance, one may use
Eclipse Modeling Framework (EMF) based generation tech-
nologies such as openArchitectureWare (OAW) to package
production-ready pipelines. EMF is an Eclipse-based modeling
framework and code generation facility for building tools and
other applications based on a structured data model. Models
can be specified using XML documents, modeling tools, and
a few other methods, then imported into EMF. Eventually,
the packaged pipelines can be deployed towards a production
platform.

This paper proposes a novel deployment strategy targeting
clouds. From a digital preservation perspective, this highlights
how Xeproc enables straightforward migration from one op-
erational infrastructure to another.

III. THE COMPUTATIONAL NEED OF DIGITAL
PRESERVATION

The steps of a workflow tend to be computationally ex-
pensive. For instance, when migrating from one XML format
to the other, one may insert an XSLT transformation in the
pipeline. XSLT processors are increasingly optimized, they
use the kind of optimization techniques found in functional
programming languages and database query languages. For
example, static rewriting of the expression tree to move
calculations out of loops, and lazy pipelined evaluation to
reduce the use of memory for intermediate results and allow
“early exit” when the processor can evaluate an expression
without a complete evaluation of all subexpressions. There
are also processors which use tree representations that are
much more efficient than a general purpose Document Object
Model (DOM) implementation, which is a non-optimized
cross-platform and language-independent convention for rep-
resenting and interacting with objects in an XML document.
However, even with these optimization, a processing a single



large document tree can take hours, provided that the computer
has the necessary resources, particularly a satisfactory amount
of physical memory.

XML transformations, while costly, are not the most expen-
sive operations. Automatic metadata extraction may involve
high-complexity natural language processing tasks such as
deep parsing and named entity recognition. The use of these
tasks can be prohibitive even for smaller collections due their
computational requirements.

It is important to recognize the ad-hoc nature of these com-
putations. Metadata extraction and migration are not frequently
performed. Small organizations, or organizations that do not
have a considerable budget for investments in information
technology do not have to maintain the resources permanently
to deal with these operations. As many text mining appli-
cations prove, cloud computing is ideally situated for such
situations.

The concept of MapReduce is often associated with cloud
computing. When talking about cloud computing we refer to
what is more precisely known as utility computing [9]. As
the name implies, the idea behind utility computing is to
treat computing resources as a metered service, like electricity
or natural gas. Under this model, a user can dynamically
provision any amount of computing resources from a (cloud)
provider on demand and only pay for what is consumed [9].
Technically, this means that the user is paying for access
to virtual machine instances that run a standard operating
system such as Linux. The virtualization technology enables
the cloud provider to allocate available physical resources
and enforce isolation between multiple users that may be
sharing the same hardware. Once one or more virtual machine
instances have been allocated, the user has full control over the
resources and can use them for arbitrary computation. When
the virtual instances are no longer needed, they are destroyed,
thereby freeing up physical resources that can be redirected to
other users. Resource consumption is measured in machine-
hours, breaking down to CPU-hours, bandwidth usage, etc.
MapReduce provides the appropriate level of abstraction to
this utility model by hiding the complexity of scaling to an
arbitrary number of nodes which may fail.

MapReduce was originally developed by Google in the early
2000s, and the framework was first published in 2004 [10]. The
publication spawned several open source efforts to implement
the framework. Hadoop, now a top-level Apache project, was
first released in 2006, and it has become the most popular
open source implementation [11].

MapReduce is not a novel framework in distributed com-
puting. It draws on well-known principles in parallel and
distributed computing and assembles them in a way to scale to
collections of sizes unseen before. The fundamental principles
of MapReduce are summarized below [9]:

• Scale out: use a large number of low-cost commodity
servers instead of a small number of expensive HPCs.

• Failures are common: a failure is not the exception, but
the norm. Redundancy is required.

• Move processing to the data: instead of moving large

volumes of data, it is worth moving the code around.
This saves network bandwidth.

• Avoid random access: hard disks seek times did not
improve at the same pace as capacities. to reduce latency
coming from seek times, data is stored in sequential files.

• Hide system-level details from the developer: program-
ming parallel, and especially distributed algorithms is a
complicated process, MapReduce hides most details to
simplify it.

• Seamless scalability: running the algorithm on a cluster
of ten or a thousand computers should not burden the
developer with additional programming.

Exploiting the resources in the cloud can be problematic
for digital preservation, as it requires persistence and high-
reliability [12], and, as outlined in the points above, the
MapReduce framework helps. The framework is designed to
be fault tolerant in an unpredictable, massively distributed
environment in which individual nodes may fail frequently.
Redundancy is built-in, with a computation launched at least
three nodes simultanously, and if one result is different than
the ones on the other two nodes, the subtask is executed
again. Debugging, however, can be a major issue. Given the
complexity of the task, a gradual scaling out can help identify
errors. A task could be launched locally or in a local pseudo-
cluster, than in a single-node cloud instance, then a full-
scale launch may follow. However, if the input collection is
inconsistent, finding out how the problem persists in the output
collection is an unresolved challenge.

The framework is inspired by map and reduce functions
commonly used in functional programming, although their
purpose in the MapReduce framework is not the same as in
their original forms [10].

In the map step, the so-called master node (a coordinating
computer in the cluster) takes the input, chops it up into
smaller sub-problems, and distributes those to worker nodes.
A worker node may do this again in turn, leading to a multi-
level tree structure. The worker node processes that smaller
problem, and passes the answer back to its master node. A
mapper commonly performs input format parsing, projection
(selecting the relevant fields), and filtering (removing records
that are not of interest). The basic data structure of the frame-
work is key-value pairs. Keys and values can be arbitrarily
complex data structures. For instance, for a collection of web
pages, the keys can be the URLs and the values are the HTML
content. For a graph, keys can be the node identifiers, while
values are the adjacency lists of those nodes. The output of
the mapper is a sorted list of key-value pairs.

In the reduce step, the master node then takes the answers
to all the sub-problems and combines them in a way to get the
output - the answer to the problem it was originally trying to
solve. As the processing gets more complex, this complexity is
generally manifested by having more MapReduce jobs, rather
than having more complex map and reduce functions. In other
words, a developer thinks about adding more jobs, rather
than increasing the complexity of the jobs. The two steps,
map and reduce, are juxtaposed by an intermediate step, sort



and shuffle. The sort phase orders the key-value pairs by a
similarity function on the keys (note that keys can be arbitrarily
complex structures), and the shuffle phase transfers the map
outputs to the reducers as inputs.

In many ways, MapReduce is a major shift from the ruling
Neumann model, which has a bottleneck between the CPU
and the memory. Since CPU speed and memory size have
increased much faster than the throughput between them,
the bottleneck has become more of a problem, a problem
whose severity increases with every newer generation of CPU.
The abstraction provided by MapReduce circumvents this
problem allowing programmers to organize computations not
over individual computers, but over entire clusters. Pushing
the data word by word between the CPU and the memory is
no longer a concern in the framework.

Fig. 2. Architectural overview of XML processing in the cloud to support
digital preservation

IV. PROPOSED ARCHITECTURE: XML WORKFLOW IN THE
CLOUD

We believe that enterprises whose core business is not
data conservation are going to have an increased demand for

knowledge and expertise in logical preservation solutions to
keep their data accessible. These organizations are often hardly
aware of changes in their technological environment. This can
have serious effects on their long-term ability to access their
highly valuable digital assets. A flexible document processing
pipeline with an associated designer, and the ability to perform
the transformations in the pipeline in the cloud are essential
for local digital preservation.

The MapReduce framework, while hiding the complexity of
the underlying architecture, forces the user to think in terms
of map and reduce operations. When it comes to document
processing, it is difficult to divide a single document to smaller
pieces. The unit for the map operation is therefore a single
XML document.

This approach integrates well with document pipelines and
document validation checkpoints modeled by Xeproc which
allows one to define and design document processes while
producing an abstract representation that is independent of
the implementation. A workflow designed for a document is
invoked from the map routine of a MapReduce job, with the
identity operator acting as the reduce function. The output is
the transformed document which then may undergo further
processing in subsequent MapReduce jobs.

To implement the above approach, we choose Apache
Hadoop, which is a software framework that supports data-
intensive distributed applications. Hadoop is essentially a
MapReduce implementation (the MapReduce engine) com-
bined with a distributed file system (HDFS). We are not mea-
suring the scalability of the software for distributed computing,
hence we opted for Hadoop as stable and widely used tool,
and did not consider other options.

The output of an XML processing pipeline is a collection
of XML documents in METS format, as mentioned in Section
II-B. Going beyond digital preservation, further automatic
content extraction may be performed at document or collection
level. Such further processing may be used to support digital
curation (see also Section VII). Indexing and machine learning
algorithms are likely to require a different XML input format.
Interfacing between the document processing pipeline and
further steps can be done with simple XSLT transformations.

V. DISCUSSION

A. Implementation

The implementation relies on the decoupling of the MapRe-
duce framework from the XML processing pipeline, and since
there are no internal dependencies for the processes, the
workload is naturally parallel. A process designed in Xeproc
is exported via the EMF interface to Python, and the process is
executed on individual documents that are mapped out to the
nodes in the cloud by a relatively simple MapReduce driver.

For local experiments, we used a workstation with 24 GB of
main memory, one quadro-core Intel Xeon E5620 CPU with
two logical units in each core and 2 TB of storage, running in a
64-bit environment. For cloud computations, we used Amazon
Web Services (AWS). It is possible to run Hadoop on Amazon
Elastic Compute Cloud (EC2) and Amazon Simple Storage



Service (S3). While Amazon Web Services is undoubtedly the
market leader in cloud computing, other providers, including
at least one open source solution, exist. We decided in favor
of AWS due to the maturity of its products.

The Python module requires bootstrapping across all in-
stances in the cluster. This involves copying the Xeproc player
from S3 to the local drive, then installing modules needed to
run it.

We use two types of Amazon EC2 instances: small standard
instances (m1.small) and large standard instances (m1.large).
The former consists of 1.7 GB of main memory, one EC2
Compute Unit (one virtual core with one EC2 Compute
Unit), 160 GB instance storage (150 GB plus 10 GB root
partition), and the software architecture is 32-bit. A large
instance includes 7.5 GB of main memory, four EC2 Compute
Units (two virtual cores with two EC2 Compute Units each),
850 GB instance storage, and the platform is 64-bit.

B. Document processing pipeline

Demonstrating the capabilities of Xeproc, we use a process
which recognizes and extracts the table of contents of a doc-
ument [13], [14]. This pipeline is composed of the following
steps (see also Figure 1):

• Entry-level PDF to XML converter2 for PDF files;
• Ad-hoc XSLT transformations for XML files;
• Page header and footer recognition;
• Text reading order reconstruction and paragraph segmen-

tation;
• Caption detection;
• Table of contents analysis.

The first steps consist in recognizing and deleting document el-
ements which can introduce noise during the table of contents
analysis: page headers and footers are recognized and deleted
in order to reduce noise (running titles); captions are deleted
to eliminate tables of figures as potential table of contents. The
text reading order and paragraph segmentation step generates
a proper content flow which is used by the table of contents
component. Finally the table of contents is extracted, and titles
in the document body are marked up as heading elements
(Figure 3).

Validation checkpoints are associated with each step. One
type of validation aims at validating the step output against
an XML Schema. Others perform more specific validations
triggering errors or warnings and using XSL Transformations
(especially XSLT 2.0) or ad hoc engines. For instance, an
XSLT 2.0 validation detects overlapping paragraphs after the
paragraph segmentation step and triggers a warning which
points out some difficult or unexpected content layout. The
user interface allows for visual inspection of the list of errors
and warnings.

C. The Dataset

The collection being studied is a collection of doctoral
theses hosted by the German National Library3. At the point

2http://sourceforge.net/projects/pdf2xml/
3http://deposit.d-nb.de/index e.htm

Fig. 3. An example of an identified table of contents in a PDF file [14]

of downloading the collection, it contained 94,437 theses. The
total volume of the PDF files is above 500GB.

The accompanying metadata is in Dublin Core format,
which is a set of elements providing a small and fundamental
group of text elements using only fifteen fields through which
most resources can be described and cataloged.

The collection is multilingual. Approximately 75 % of the
collection is in German, and over 20 % are in English. The
presence of other languages is almost negligible.

D. The overhead of using a MapReduce framework
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Fig. 4. Comparison of running times on a single local node

On a small subset of a hundred documents, MapReduce
performance is close to single-core batch processing (Figure



4). This is probably due to the overhead of setting up the
framework. For larger collection sizes, MapReduce traces the
quadro-core performance. This is expected, since we see three
to four map tasks running simultaneously.

Load balancing is not optimized for the batch processor, as
it simply divides up the collection to tasks of approximately
equal size. The size, however, does not correspond well with
the actual time spent on computation. This gives a slight ad-
vantage to MapReduce, since it has a sophisticated mechanism
for load balancing. This is not critical when comparing with
the quadro-core performance, as the differences between the
finishing times of individual threads are marginal for four
concurrent threads. The differences in running eight processes
are more significant, the slowest thread finishes 1.6 times
slower than the fastest. Hence the eight-thread performance
is not directly comparable with that of MapReduce.

E. Running time in the cloud
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Fig. 5. Comparison of running times with different collection sizes

Before we compare the running times of executing a
pipeline locally versus in the cloud, we must note some
changes that are required for scaling out. The default configu-
ration for the EC2 m1.small and m1.large instances has 1.7 GB
main memory with 900 MB swap, and 7.5 GB main memory
with no swap, respectively. As the memory requirements on
the single local node hinted, this is not sufficient for running
several processes simultaneously. An m1.small instance runs
two child processes for MapReduce tasks, and and m1.large
instance launches four. To accommodate the occasional peak
memory usage, 4 GB of swap memory was configured for
both type of instances. We observed a maximum of 2.1 GB
swap memory used, which is a surprising result, since local
single-node runs saw up to 8 GB of memory usage for a single
Python process.

The document processing pipeline is not only memory-
intensive, but is also demanding on the CPU. Since the Python
interface does not comply with the stream interface of Hadoop,
a map task which spawns the Python process may not be able
to send “heartbeat” signals for long periods of time. These

heartbeats signals are required by the framework, and if they
are not received periodically, the task is considered failed. To
avoid this, we removed the need for these signals. As the
Python module always terminates, a permanent lock-up will
not occur. It may happen that several pipelines require long
computations simultaneously – a larger number of nodes will
balance the load better.

The times shown in Figure 5 do not include the time needed
to launch an instance or a cluster. This depends on the demand,
the type of instances launched, and the number of instances
requested. For a cluster of m1.large instances the starting time
alone can be ten minutes or more. We focus our attention on
the actual execution time of the document processes. The time
and cost of moving data in and out of the cloud is negligible
compared to the exectution time.

The closest equivalent to our local node is a single m1.large
instance. The running times are marginally better on the local
node for collection size above a hundred documents (75 % and
86 % of the running time compared to the single quadro-core
cloud instance). This is in line with our intuition, as the local
node has four times more main memory and does not have to
rely on swap memory at all. However, Hadoop configuration
is more fine-tuned for the virtual instances, and that may cause
the better performance.

On small collections, there is little to gain by scaling to a
high number of nodes or processing cores. As the collection
size increases, it makes more and more sense to use a larger
cluster. With a twenty-instance claster of m1.large nodes, the
running time drops from two days to just seven hours. Cost,
however, becomes an important aspect in choosing the correct
cluster size.

F. Cost analysis of computing and storage
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Fig. 6. Comparison of average cost of computations with different collection
sizes

The price analysis is based on instance pricing in the EU
West region (Ireland) as of September 2009. The prices indi-
cated do not include VAT. The pricing for compute instance
does not include a small fixed charge for using the MapReduce
framework, it indicates the cost of using EC2 instances only.



Striking an optimal average price depends largely on the
collection size. Since full hours have to be paid for partial
hours as well, small data sets are the cheapest to process on
a single or a few m1.small instances (Figure 6).

The scenario is different for larger collections. They tend
to have a minimum average cost in the middle range. For
a thousand documents, the lowest cost is US$0.0057 per
document in clusters of ten or twenty instances. For ten
thousand documents, the lowest average price is US$0.0037
with a cluster of ten m1.small instances. This also shows a
trend the larger the collection the lower the average cost per
processed object.

Beyond the compute instances, we also look at persistent
storage in the cloud as an alternative to local hosting. Amazon
S3 charges US$0.150 per gigabyte per month for the first fifty
terabyte of data. To store the full collection, it would amount to
approximately US$80.00 per month. This, however, is not the
total cost of storage, as the access requests also cost US$0.01
per thousand. Depending on the purpose of the collection,
this may prove to be a substantial sum. Public access to the
collection stored in S3 would also need third-party solutions,
further increasing the cost.

VI. RELATED WORK

Data grids provide several functions required by digital
preservation systems, particularly when massive amounts of
data must be preserved [1], offering a distributed infrastructure
and services that support applications that deal with massive
data collections stored in heterogeneous distributed resources.
Focusing on the technical aspects first, grids are built using
middleware software making fundamental aspects such as
file management, user management and networking protocols,
completely transparent. DP in a grid environment, however,
suffers from a number of threats. These threats include com-
ponent failures such as media faults, hardware faults, software
faults, communication faults, network services failures. These
faults are assumed as part of the normal operation in a MapRe-
duce framework, and are addressed at lower level, application
developers do not have to deal with them directly. Other
threats in a grid environment include organizational issues,
such as management failures and economic failures. These
can be considered at a higher organizational level through
preservation policies that include duplication of resources and
integrity checks among others. With a cloud provider involved,
these policies can be more difficult to enforce.

As part of our efforts in SHAMAN, we packaged Xeproc
pipelines and components into standalone Python programs
that can be deployed on any node of a grid. In the project,
we actually targeted iRODS4 for storage with Cheshire5 used
for full-text indexing. IRODS stands for Integrated Rule-
Oriented Data System, and it is a data grid software system
with applications in digital libraries, persistent archives, and
real-time data systems. IRODS management policies (sets of

4https://www.irods.org/
5http://www.cheshire3.org/

assertions these communities make about their digital collec-
tions) are characterized in iRODS Rules and state information.
At the iRODS core, a Rule Engine interprets the Rules to
decide how the system is to respond to various requests and
conditions. This ability to execute rules conditionally, and
to define multiple rules implementing alternative means of
achieving the same goal, provide a degree of flexibility that
hold great promise for implementing automated digital cura-
tion and preservation applications [15]. The other component,
Cheshire, is an XML search engine including support for XML
namespaces, unicode, and a distributable object oriented mode.
Cheshire proved to be a fast engine for digital libraries in
a distributed grid environment [16], and integrates well with
iRODS [?]. The present work is a viable alternative to the
iRODS approach to digital preservation in the cloud. Further
processing, such as indexing, may also be performed in the
cloud.

Digital preservation requires persistence and, according to
[17], the highest degree of persistence means fully persistent
materials that enable high confidence for ongoing preservation
and access. To see how cloud computing supports the cause,
it is important to make a clear distinction between the cloud
provider and its services and the MapReduce framework that
enable an efficient use of the services. The technical issues
were discussed in Section III. Here we would like to address
the issues pertaining to the cloud provider. The underlying
benefit of cloud computing is shared resources, which is
supported by the underlying nature of a shared infrastruc-
ture environment. A service-level agreement (SLA) records
a common understanding about services, priorities, responsi-
bilities, guarantees, and warranties. Service level agreements
span across the cloud and are offered by service providers
as a service based agreement rather than a customer based
agreement. Measuring, monitoring and reporting on cloud
performance is based upon an end user experience or the
end users ability to consume resources. The SLA may also
specify the levels of availability, serviceability, performance,
operation, or other attributes of the service. The “level of
service” can also be specified as “target” and “minimum”,
which allows users to be informed what to expect. In the
context of DP, if the collection is preserved in the cloud,
SLA has to explicitly define the persistency of storage. Cloud
providers may have fundamentally different SLAs, which
makes comparison difficult. An ongoing European Union
funded Framework Programme 7 project, SLA@SOI, is re-
searching aspects of multi-level, multi-provider SLAs within
service-oriented infrastructure and cloud computing [18]. The
project will eventually deliver predictability, dependability, and
transparency in SLA management [19], which will make it
easier to choose a cloud provider suitable for DP purposes.

VII. FUTURE WORK

Another aspect of the DP problem area is digital curation
which is being increasingly used for the actions needed to add
value to and maintain these digital assets over time for current
and future generations of users [20]. Digital curation naturally



involves the preservation of collections, and also entails the
semantic and ontological continuity and comparability of the
collection content. Document and collection-level metadata
and metadata are crucial to support the goals of digital
curation.

We anticipate that in the tested framework, machine learn-
ing algorithms can be useful to support further metadata
extraction. This would involve indexing the outcome of a
document processing pipeline, either the full-text documents
or the extracted features. Once indexing is performed, vari-
ous clustering, classification, and similar algorithms can be
deployed to add metadata to individual documents or to the
entire collection.

When choosing the machine learning component, one has to
make a trade-off. Tools such as RapidMiner6 enable designing
a document indexing and machine learning in a similar fashion
to Xeproc XML processing pipeline designer: they capture the
intent behind the learning process and enable the preservation
of the processing pipeline. However, this approach will not
integrate readily with the MapReduce framework. On the other
hand, machine learning libraries developed for Hadoop, such
as Mahout [21], make designing the process difficult. Selecting
the right tool that supports DP is an open research issue.

VIII. CONCLUSION

With a paradigm shift in the making toward a service-
oriented architecture, digital preservation is one of the areas
to benefit from this change. Considerations suggest that es-
pecially small organizations should welcome the turn as an
attractive upcoming solution to their related problems. To test
the feasibility of this assumption, we tested the Xeproc XML
workflow designer in a cloud processing environment to show
that the process is smoothly running.

The competitive aspects of the new technology, including
its cost assessments, are too early to address but as shown
by parallel experiments on a high performance workstation,
memory and CPU requirements of DP are quite considerable
and may be beyond reach for several memory institutions. As
first results by cloud computing suggest, even a single node
m1.large instance has a performance close to that of a decent
workstation which makes running Xeproc possible for every-
one. Moreover, a single workstation may be more expensive to
rent for a longer term than running the same calculations on a
cluster, as shown in the average cost diagrams. By picking the
cloud configuration with the lowest estimated average cost,
bulky DP jobs can be done at an affordable price and with
flexibility beyond that of fixed resources.

Therefore we believe that the architecture outlined in this
paper advances the state-of-the-art in digital preservation for
the following reasons:

• The procurement of an expensive server or a grid can
be replaced by service-level agreements with the cloud
provider;

6http://rapid-i.com/

• The flexibility is unprecedented in terms of scale and in
terms document process design;

• Ad-hoc peak computations that are typical in document
format migration are easily addressed;

• Persistent storage in the cloud is a viable alternative to
local servers.
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