
Spectral Composition of Semantic Spaces

Peter Wittek and Sándor Darányi
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Abstract. Spectral theory in mathematics is key to the success of as
diverse application domains as quantum mechanics and latent semantic
indexing, both relying on eigenvalue decomposition for the localization
of their respective entities in observation space. This points at some
implicit “energy” inherent in semantics and in need of quantification.
We show how the structure of atomic emission spectra, and meaning in
concept space, go back to the same compositional principle, plus propose
a tentative solution for the computation of term, document and collection
“energy” content.

1 Introduction

In quantum mechanics (QM), the spectrum is the set of possible outcomes
when one measures the total energy of a system. Solutions to the time-
independent Schrödinger wave equation are used to calculate the energy
levels and other properties of particles. A non-zero solution of the wave
equation is called an eigenenergy state, or simply an eigenstate. The set
of eigenvalues {Ej} is called the energy spectrum of the particle. This
energy spectrum can be mapped to frequencies in the electromagnetic
spectrum.

In this paper, we argue that by decomposing a semantic space, one
can gain a “semantic spectrum” for each term that makes up the space.
This makes sense for the following reason: mapping spectra to the electro-
magnetic spectrum is a unification effort to match energy and intellectual
input stored in documents by modelling semantics on QM. Energy is a
metaphor here, lent from machine learning which imitates pattern recog-
nition and pattern naming in cognitive space. We adopted this as our
working hypothesis based on [1].

To this end, we ascribe significance to two aspects of the above par-
allel. Both make the comparison between semantics and QM reasonable.
The first is an alleged similarity between them, namely eigendecomposi-
tion and related methods leading to meaningful conclusions in both. The



second is the evolving nature of QM and semantic systems, based on inter-
actions among constituents, leading to structuration. The insights we offer
in this paper do not rely on extensive quantitative benchmarks. Instead,
the paper reports our initial foray into exploring the above metaphor.

This paper is organized as follows. Section 2 discusses core concepts
in QM relevant to this treatise. Section 3 gives an overview of seman-
tic spaces in general and Section 4 describes their spectral composition
in particular, including their treatment as observables, corpus and term
semantic spectra, and indications for future work such as evolving seman-
tics. Section 5 sums up the conclusions.

2 Related concepts in quantum mechanics and
spectroscopy

In quantum mechanics, observables are not necessarily bounded, self-
adjoint operators and their spectra are the possible outcomes of measure-
ments. The Schrödinger wave equation is an equation that describes how
the quantum state of a physical system changes over time. Approximate
solutions to the time-independent Schrödinger wave equation are com-
monly used to calculate the energy levels and other properties of atoms
and molecules. From this, the emission spectrum is easy to calculate.

Fig. 1. The emission spectrum of hydrogen

Emission is the process by which two quantum mechanical states of a
particle become coupled to each other through a photon, resulting in the
production of light. The frequency of light emitted is a function of how
far away in energy the two states of the system were from each other,
so that energy is conserved: the energy difference between the two states
equals the energy carried off by the photon (Figure 1).

Since the emission spectrum is different for every element of the pe-
riodic table, it can be used to determine the composition of a material.
In general, spectroscopy is the study of the interaction between mat-
ter and radiated energy. A subset of spectroscopic methods, called spec-
trophotometry, deals with visible light, near-ultraviolet, and near-infrared



wavelengths. For the rest of this paper, we limit ourselves to visible spec-
troscopy, because this approach focuses on the electronic orbitals (i.e.,
where the electrons can be found), whereas, for instance, infra-red spec-
troscopy is concerned with the internal motions of the molecule (how the
bonds stretch, angles bend, etc.).

Fig. 2. The visible spectrogram of the red dwarf EQ Vir (figure adapted from [2])

A spectrogram is a spectral representation of an electromagnetic signal
that shows the spectral density of the signal. An example is astronomical
spectroscopy that studies the radiation from stars and other celestial ob-
jects (Figure 2). While discrete emission bands do not show clearly, the
intensity of certain wavelengths indicates the composition of the observed
object. The emission lines are caused by a transition between quantized
energy states and theoretically they look very sharp, they do have a finite
width, i.e. they are composed of more than one wavelength of light. This
spectral line broadening has many different causes, with the continuum
of energy levels called “spectral bands”. The bands may overlap. Band
spectra are the combinations of many different spectral lines, resulting
from rotational, vibrational and electronic transitions.

3 A brief overview of semantic spaces

We regard semantic spaces as algebraic models for representing terms as
vectors. The models capture term semantics by a range of mathematical
relations and operations. Language technology makes extensive use of
semantic spaces. Among the reasons are the following:

– The semantic space methodology makes semantics computable allow-
ing a definition of semantic similarity in mathematical terms. Sparsity



plays a key role in most semantic spaces. A term-document vector
space (see below), for instance, is extremely sparse and therefore it is
a feasible option for large-scale collections.

– Semantic space models also constitute an entirely descriptive approach
to semantic modelling relying on the distributional hypothesis. Previ-
ous linguistic or semantic knowledge is not required.

– The geometric metaphor of meaning inherent in a vector space kind of
model is intuitively plausible, and is consistent with empirical results
from psychological studies. This relates especially to latent semantic
indexing (see below) [3]. A link has also been established to Cognitive
Science [4].

While there are several semantic space models, we restrict our discus-
sion to the following two major kinds: term-document vector spaces [5]
and latent semantic indexing (LSI, [6]); and the hyperspace analogue to
language (HAL, [7]).

The coordinates in the vector of a term in a term-document space
record the number of occurrences of the term in the document assigned to
that particular dimension. Instead of plain term frequencies, more subtle
weighting schemes can be applied, depending on the purpose. The result is
an m×n matrix A, where m is the number of terms, and n is the number
of documents. This matrix is extremely sparse, with only 1−5% of the en-
tries being non-zero. This helps scalability, but has an adverse impact on
modelling semantics. For instance, in measuring similarity with a cosine
function between the term vectors, we often end up with a value of zero,
because the vectors do not co-occur in any of the documents of the collec-
tion, although they are otherwise related. To overcome this problem, LSI
applies dimension reduction by singular value decomposition (SVD). The
term-document matrix A can be decomposed as A = UΣV T, where U is
an m×m unitary matrix, Σ is an m×n diagonal matrix with nonnegative
real numbers, the singular values, on the diagonal, and V is an n×n uni-
tary matrix. By truncating the diagonal of Σ, keeping only the k largest
singular values, we get the rank-k approximation of A, Ak = UkΣkV

T
k .

This new space, while not sparse, reflects semantic relations better [3].
Apart from LSI, a term co-occurrence matrix is another alternative to
overcome the problem of sparsity. It is obtained by multiplying A with
its own transpose, AT.

The HAL model considers context only as the terms that immediately
surround a given term. HAL computes an m×m matrix H, where m is
the number of terms, using a fixed-width context window that moves
incrementally through a corpus of text by one word increment ignoring



punctuation, sentence and paragraph boundaries. All terms within the
window are considered as co-occurring with the last word in the window
with a strength inversely proportional to the distance between the words.
Each row i in the matrix represents accumulated weights of term i with
respect to other terms which preceded i in a context window. Similarly,
column i represents accumulated weights with terms that appeared after i
in a window. Dimension reduction may also be performed on this matrix.

We note in passing that there exists a little recognized constraint of
the model in testing: for a match between theories of word semantics and
semantic spaces, a semantic space is a statistical model of word meaning
observed [8]. For its workings, it has to match a reasonably complex theory
of semantics; but whereas Lyons regarded meaning a composite [9], i.e. a
many-faceted complex phenomenon, the distributional hypothesis [10] as
the sole semantic underpinning of eigenmodels is anything but complex
and must be hence deficient. One can use it as long as there is nothing
else available but, at the same time, one must not stop looking for a more
comprehensive model. It holds in this sense that we look at the validity
and some consequences of the semantic collapse model based on quantum
collapse, treating semantic deep structure as an eigenvalue spectrum.

4 Spectral composition of semantic spaces

4.1 Semantic spaces as observables

Our line of thought is as follows: in QM, atoms have ground states low on
energy, and excited states high on it. Such states are expressed as separate
spectral (latent) structures, based on the way they can be identified.
By analogy a term should have a “ground state” and may have several
“excited states” as well, all in terms of spectra.

In what follows, we regard a semantic space an observable. This being
a real or a complex space, its spectrum will be the set of eigenvalues.
If we decompose a semantic space we get the so-called concept space
or topic model in which terms map to different locations due to their
different composition. We identify this latent topic mixture in LSI with
the energy eigenstructure in QM. This means that more prevalent hidden
topics correspond to higher energy states of atoms and molecules.

Identifying “excited states” of word forms with homonyms, and word
sense disambiguation with observation, the above shows resemblance with
the quantum collapse of meaning described by [8]. They argue that a sense
can be represented as a density matrix which is quite easily derived from
summing the HAL matrices of the associated contexts. In addition, a



probability can be ascribed the to a given sense. For example, the density
matrix ρ for the meaning of a word can be formalized at the following
linear combination:ρ = p1ρ1 + . . . + pmρm, where each i is a basis state
representing one of the m senses of the term and the probabilities pi sum
to unity. This is fully in accord with QM whereby a density matrix can be
expressed as a weighted combination of density matrices corresponding to
basis states. Context is modelled as a projection operator which is applied
to a given density matrix corresponding to the state of a word meaning
resulting in its ‘collapse’. The probability of collapse p is a function of
the scalar quantity resulting from matching. The analogy with orthodox
QM is the following - a projection operator models a measurement on
a quantum particle resulting in a collapse onto a basis state. Spectral
decomposition by SVD also allows the description of a word as the sum
of eigenstates using the bra-ket terminology [11]. The formal description is
similar to the above. Projection operators are defined by singular vectors.
These are orthogonal.

The semantic space must be Hermitian to pursue the metaphor of an
observable in a quantum system. The sum of a HAL space H and its
transpose is a Hermitian matrix [11]. A different approach is to pad the
corresponding matrix of a term-document space A with zeros to make an
operator map a Hilbert space onto itself, and then use a product with its
own transpose as the Hermitian operator [12]. For the rest of the paper,
we adopt a similar approach, taking the term co-occurrence matrix AAT,
which is a Hermitian operator. For symmetric and Hermitian matrices, the
eigenvalues and singular values are obviously closely related. A nonnega-
tive eigenvalue, λ ≥ 0, is also a singular value, σ = λ. The corresponding
vectors are equal to each other, u = v = x. A negative eigenvalue, λ < 0,
must reverse its sign to become a singular value, σ = |λ|. One of the corre-
sponding singular vectors is the negative of the other, u = −v = x. Hence
a singular value decomposition and an eigendecomposition coincide.

4.2 Semantic spectrum

In a metaphoric sense, words in an eigendecomposition are similar to
chemical compounds: as both are composed of doses of latent constituents,
the dosimetric view applies to them. The field that studies substances of
unknown composition is called spectrometry. By analyzing their spectra,
components of such substances can be identified because each chemical
component has a unique “fingerprint”.

The case of a semantic spectrum is not unlike. We performed the
eigendecomposition of the term co-occurrence matrix of the Reuters-



21578 collection. There are many other methods to capture the latent
constituents of terms, for instance random indexing [13], latent Dirichlet
allocation [14], or spherical k-means [15]. It is an open question which
method captures the latent structure best. We use eigendecomposition
due to its similarity to spectrometry. The term co-occurrence matrix is a
Hermitian operator, hence the eigenvalues are all real-valued. Since the
term co-occurrence matrix does not have an underlying physical mean-
ing, we mapped the eigenvalues to the visible spectrum. If 400nm is the
lowest visible wavelength and 700nm is the highest, then, assuming that
the lowest eigenvalue is approximately zero, and λmax denotes the high-
est eigenvalue, the mapping is performed by F (x) = 400 + x700−400

λmax
. The

resulting spectrum is plotted in Figure 3(a). By this mapping one obtains
a visual snapshot of an unknown topic composition.

In other words, by this metaphor we regarded the semantic spectrum
of the above test collection as a composite, a sum of spectra of elementary
components, which would correspond to individual elements in a chemical
compound in spectrophotometry. This representation stresses the similar-
ity of chemical composition of elements to the semantic composition of
words.

(a) The spectrum of the Reuters collection

(b) The spectrum of the term Japan

(c) The spectrum of the term courage

(d) The spectrum of the term male

Fig. 3. The spectrum of the collection and of different words. Higher energy states
correspond to the right end of the spectrum.

We propose matching spectral components to terms based on their
proximity to latent variables. This creates individual, albeit overlapping,



spectra for every term. Having used a 0.05 threshold value of the cosine
dissimilarity measure between term vectors and eigenvectors, if the cosine
was above this value, we added the corresponding scaled eigenvalue to the
term’s spectrum. In this regard, term spectra may overlap, and their sim-
ple sum will provide the spectrum of the collection. This metaphor does
not account for more complex chemical bonds that create the continuous
bands as pictured in Figure 2.

By such experimentation, one can end up with interesting interpre-
tation problems. For instance, the term Japan (Figure 3(b)) has a high
wavelength component, and a number of low wavelengths. This means
that by the formula Ephoton = hν, where h is Planck’s constant and ν is
the frequency (the inverse of wavelength multiplied by the speed of light),
the term has one low-energy state which it is likely to take, and a number
of other, high-energy states which it takes given an appropriate context.
In its low-energy states the term is likely to refer to the country itself,
whereas the less frequently encountered contexts may activate one of the
four nominal and one verbal senses listed in WordNet. In other words,
the term was correctly treated as a homonym by considering its senses as
atoms in a molecule.

Another example, the term courage does not have a true low-energy
state, it takes only higher-energy configurations. Here our tentative sug-
gestion is that eigendecompositon does not distinguish between molecular
or atomic electron orbits, hence future research may indicate that such
high energy states are typical for terms treated as atoms (Figure 3(c)).

The term male can take two fairly low-energy states, but very few
higher ones (Figure 3(d)). Since this word has three nominal and three
verbal senses in WordNet, it is a reasonable working hypothesis to say
that the term was treated as a molecule with six states. We trust that by
more experimentation, we will gain better insight into the art of semantic
spectrogram interpretation.

4.3 Evolving semantics and considerations for future work

A related aspect of our approach is the quest to formalize corpus dynam-
ics, in line with the recommendations spelled out by [16], also keeping
the possible differences between language and quantum interaction sys-
tems in mind. We depart from the assumption that two types of dynamics
characterize any text document collection: external forces leading to its
expansion, and the inherent quality in terms and their agglomerates called
their meaning. We offer two observations why this inherent quality may
have something to do with the concept of energy (a.k.a. work content):



– Interestingly, spectral theory in mathematics has been key to the suc-
cess of as diverse application domains as QM and LSI. In other words,
both the Schrodinger equation and LSI rely on eigenvalue decompo-
sition for the localization of their respective entities in observation
space. This points at some implicit “energy” inherent in semantics
and in need of quantification. Another indication of the “energetic”
nature of word meaning comes from dynamic semantics where it is
regarded as an agent or promoter of change [17, 18]. However, contex-
tual and referential theories of word meaning [10, 19] currently used
in applications trying to capture and exploit semantic content focus
on the quantities of qualities only, and may therefore miss part of the
underlying framework;

– The phenomenon of language change and its modelling [20] necessi-
tates a coherent explanation of the dynamics of evolving collections. In
line with the above, since any matrix has an eigendecomposition and
therefore a latent structure, evolving vector spaces of terms and docu-
ments follow directly from variable matrix spectra. However, this has
implications for modelling semantics on QM, plus offers an illustra-
tion to the problem of assigning an “energetic” nature to word mean-
ing. Namely, whereas Salton’s dynamic library model [21], except for
mass, already embodied all the key concepts of Newtonian mechanics,
it is exactly this missing element which prevents one from construct-
ing time-dependent term and document potential fields, and hence
evolving “energy” landscapes. Also, without assuming that terms and
documents have specific “masses” and corresponding “energies”, it is
very difficult to explain how intellectual work can be stored in doc-
uments and collections. In other words, unless one comes up with a
better solution to the problem of how thinking amounts to work, one
must assume that work as the line integral of force needs a language
model which utilizes the concepts of distance, velocity, acceleration,
mass, force and potential.

The implication is that if we want to be coherent, applying QM for a
better understanding of meaning begs for the concept of a term-specific
mass. However, such specific values cannot be extracted from an evolving
environment, therefore they must reside somewhere else, e.g. in a stable
environs such as an ontology, from where they can “charge” entities as
their forms with content. This would amount to a challenge to the cur-
rent view on semantic spaces which strives to explain the presence of all
the meaning in vector spaces by term context only, and would resemble a
referential model of word semantics instead. A series of semantic spectro-



grams, i.e. snapshots taken of collection content over time could display
this evolving latent “energy” structure, and illustrate our point. In such
an environment, term ”energies” cannot be either constant or specific
though, a contradiction to be explored.

In QM, it is the Hamiltonian which typically describes the energy
stored in a system. With the above caveat, it is evident that in order to
experiment with the dynamic aspect of meaning, one needs to take a look
at the Hamiltonian of a collection. Further because in the above exper-
iment, we identified the superposition of term states in the absence of
an observer with that of homonyms in need of disambiguation, the same
word form with different senses invites the parallel of molecular orbitals,
and hence the use of the molecular Hamiltonian. This is the equation
representing the energy of the electrons and nuclei in a molecule, a Her-
mitian operator which, together with its associated Schrödinger equation,
plays a central role in computational chemistry and physics for computing
properties of molecules and their aggregates.

At the same time it is necessary to point out that, whereas the demon-
strated applicability of QM to semantic spaces implies the presence of
some force such as lexical attraction [22] or anticipated term mass [23],
because of the “energetic” explanation we can calculate with two kinds
of attraction between terms only, i.e. one caused by polarity and lead-
ing to the Coulomb potential, the other caused by mass and leading to
gravitational potential. But whereas there is hope that some aspect of
vocabularies can be associated in the future with the role mass plays in
physics, we do not know of any attempts to explain vector spaces in terms
of polarity such as negative and positive electric charges unless one con-
siders absence and presence in a binary matrix as such. However, then
some kind of existential polarity is modelled by the wrong numerical kit,
but nevertheless, as the results prove, the metaphor works: the expres-
sion could be constructed. Meanwhile, semantics modelled on QM also
works, but we do not know why, as according to our current understand-
ing, with this many ill fits between physics and language, it should not.
These contradictions call for continued research.

5 Conclusions

Apart from semantic spectrograms bringing closer the idea of mathemat-
ical energy, a frequent concept in machine learning and structured pre-
diction [1], our approach has the following attractive implications with
their own research potential:



– Studying and eventually composing semantic functions from matrix
spectra is a new knowledge area where the mathematical objects used,
i.e. functions, have a higher representation capacity than vectors. This
surplus can be used for the encoding of different aspects of word and
sentence semantics not available by vector representation, and in gen-
eral opens up new possibilities for knowledge representation;

– This form of semantic content representation provides new opportu-
nities for optical computing, including computation by colours [24];

– Connecting QM and language by the concept of energy, represented in
the visual spectrum, has a certain flair which goes beyond the paeda-
gogical usefulness of the metaphor. Namely, considering semantics as
a kind of energy and expressing it explicitly as such brings the very
idea of intellectual work stored in documents one step closer to mea-
surable reality, of course with all the foreseeable complications such
an endeavour might entail.
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