
Brushing the Locks out of the Fur:
A Lock-Free Work Stealing Library Based on Wool

Håkan Sundell
School of Business and Informatics
University of Borås, 501 90 Borås

E-mail: Hakan.Sundell@hb.se

Philippas Tsigas
Department of Computer Science and Engineering

Chalmers University of Technology, 412 96 Göteborg
E-mail: tsigas@chalmers.se

Abstract

We present a lock-free version of the light-weight user-
level task management library called Wool, in an aim to
show that even extremely well tuned, in terms of synchro-
nization, applications can benefit from lock-free program-
ming. Explicit multi-threading is an efficient way to exploit
the offered parallelism of multi-core and multi-processor
based systems. However, it can sometimes be hard to ex-
press the inherited parallelism in programs using a limited
number of long lived threads. Often it can be more straight-
forward to dynamically create a large number of small tasks
that in turn automatically execute on the available threads.
Wool is a promising and efficient library and framework
that allows the programmer to create user tasks in C with
a very low overhead. The library automatically executes
tasks and balances the load evenly on a given number of
threads by utilizing work stealing techniques. However, the
synchronization for stealing tasks is based on mutual exclu-
sion which is known to limit parallelism and efficiency. We
have designed and implemented a new lock-free algorithm
for synchronization of stealing tasks in Wool. Experiments
show similar or significantly improved performance on a set
of benchmarks executed on a multi-core platform.

1. Introduction

Explicit multi-threading is an efficient way to exploit the
offered parallelism of multi-core and multi-processor based
systems. However, it can sometimes be hard to express the
inherited parallelism in programs using a limited number of
long lived threads. Often it can be more straightforward to
dynamically create a large number of small tasks that in turn
automatically execute on the available threads. See Figure
1 for an example of how this kind of task parallelism can be
expressed for computing Fibonacci numbers using the Wool
[3] library.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "wool.h"
4

5 TASK_1(int, fib, int, n)
6 {
7 if(n<2) return n;
8 else {
9 int a,b;

10 SPAWN(fib, n-2);
11 a = CALL(fib, n-1);
12 b = SYNC(fib);
13 return a+b;
14 }
15 }
16

17 TASK_2(int, main, int, argc,
18 char **, argv)
19 {
20 printf("%d\n", CALL(fib, atoi(argv[1]))

);
21 }

Figure 1. A simple Fibonacci function defined
using the Wool library.

Fundamental to multi-threading is the ability to share
data among the threads. To avoid inconsistency of the
shared data due to concurrent modifications, accesses to the
shared data must be synchronized and the common solu-
tion using mutual exclusion is known for carrying several
serious problems. The alternative of using non-blocking
synchronization can avoid these problems and have been
shown to permit substantial performance improvement of
parallel applications[7]. Two basic non-blocking methods
have been proposed in the literature; lock-free and wait-free
[5].

One of the first implementations of a light-weight task
management system was the Cilk-5 framework introduced
by Frigo et al. [4]. This framework keeps a task queue (ac-

tually stack) for each thread, from where other threads can
steal tasks by concurrently removing tasks from the other
end of the data structure. This work-stealing deque data
structure has then been improved by using lock-free syn-
chronization by Arora et al. [1], Chase and Lev [2] and
several others later. By limiting to only allow tasks that
can be executed several times (i.e., having no side effects)
this approach has been further improved by Michael et al.
[6]. Wool by Faxén [3] is a promising task management
library that achieves a substantial improvement compared
to the deque approach, while still allowing tasks with side
effects, by collapsing the data structure layers and instead
synchronize the stealing directly on each individual task.
The synchronization used in Wool is lock-based, although
highly optimized to allow for maximal concurrency.

We present a new lock-free algorithm for the synchro-
nization in Wool, in an aim to show that even extremely
well tuned lock-based applications can benefit from lock-
free programming.

2. The New Lock-Free Algorithm

In Wool [3] the data structures for describing and or-
ganizing the work load are consisting of Workers and
Tasks. Each Worker is representing a specific thread.
The queue of work to do, added by this thread, is repre-
sented by an array of Tasks. Normally, this queue is only
used by its worker, but when a worker is idle it will try to
take work also from other worker’s queues. This concur-
rent stealing needs synchronization and the common solu-
tion (e.g., in [1] [2] [6]) is to synchronize through operations
on the queue.

In Wool, thieves and victims instead synchronize
through the task descriptors in the task queue of the victim.
A Task contains the following information:

• A field f describing the function that executes the task,
where values are either a pointer to the function or
INLINED.

• A field balarm indicating whether the task has been
stolen, where values are either READY, STOLEN or
DONE.

• The arguments the task was spawned with.

• The return value of the task (shares space with the ar-
guments).

For keeping track of the currently steal-able tasks, each
Worker descriptor keeps a field bot that points to the first
task in the array that could possibly be stolen. In Wool,
synchronization between thieves as well as between thieves
and a victim are handled using mutual exclusion, see Figure
2 for pseudo-code description of the synchronization part of

1 bool steal(Worker *victim)
2 {
3 lock(victim->lck);
4 Task *t = victim->bot;
5 t->balarm = STOLEN;
6 memory_barrier();
7 if(t->f == INLINED) {
8 unlock(victim->lck);
9 t->balarm = READY;

10 return false;
11 } else {
12 victim->bot++;
13 unlock(victim->lck)
14 ... // Run the task
15 memory_barrier();
16 t->balarm = DONE;
17 return true;
18 }
19 }
20

21 void sync(Task *t)
22 {
23 t->f = INLINED;
24 memory_barrier();
25 if(t->balarm != READY) {
26 // Wait for thief to fully decide
27 lock(self->lck);
28 if(t->balarm == READY) {
29 unlock(self->lck);
30 ... // Run the task
31 } else {
32 unlock(self->lck);
33 ... // Wait for thief to finish
34 self->bot--;
35 }
36 }
37 }

Figure 2. The old lock-based algorithm for
synchronization between thief and victim.

1 void FAA(int volatile *address, int number)
atomically do {

2 *address = *address + number;
3 }
4 // also CAS(void * volatile *address, void *

oldvalue, void *newvalue)
5 bool CAS(int volatile *address, int oldvalue,

int newvalue) atomically do {
6 if(*address == oldvalue) {
7 *address = newvalue;
8 return true;
9 }

10 else return false;
11 }
12 // also DWCAS(void * volatile *address, void *

oldvalue1, void *oldvalue2, void *newvalue1,
void *newvalue2)

13 bool DWCAS(int volatile *address, int oldvalue1,
int oldvalue2, int newvalue1, int newvalue2
) atomically do {

14 if(address[0] == oldvalue1 && address[1] ==
oldvalue2) {

15 address[0] = newvalue1;
16 address[1] = newvalue2;
17 return true;
18 }
19 else return false;
20 }

Figure 3. The Fetch-And-Add (FAA) and
Compare-And-Swap (CAS) atomic primitives.

Wool. In order to optimize for the common case (sync is
executed much more often than steal), the victim does not
use locking:

• at all when modifying steal-able status (i.e., f).

• most of the times when checking for stealing.

However, due to the weak synchronization from the side
of the victim (the thieves synchronize always using locks)
it can happen that the thief, after it announces that a task is
STOLEN, it recognizes that the task is no longer steal-able.
This can happen in the case where f was set to INLINED,
by the victim, concurrently with the announcement action
by the thief. In order to take care of this scenario the vic-
tim needs to make sure that the thief has finished with its
stealing decision before trusting the balarm stealing status.
One way that this can be achieved is by making the victim
to wait for the thief to release the lock, the way it is done in
Wool.

In order to create a lock-free algorithm for the synchro-
nization in Wool, we need to utilize atomic primitives avail-
able in the hardware for shared memory systems. Figure
3 describes the semantics of some operations for atomic
updates that are commonly available on contemporary sys-
tems. Recently, several architectures (e.g., Intel x86 and

1 bool steal(Worker *victim)
2 {
3 Task *t = victim->bot;
4 f = t->f;
5 if(f != INLINED && DWCAS(&t->f, f, READY, f

, STOLEN)) {
6 FAA(&victim->bot, 1);
7 ... // Run the task
8 memory_barrier();
9 t->balarm = DONE;

10 return true;
11 }
12 else return false;
13 }
14

15 void sync(Task *t)
16 {
17 t->f = INLINED;
18 memory_barrier();
19 if(t->balarm == READY) {
20 ... // Run the task
21 }
22 else {
23 ... // Wait for thief to finish
24 FAA(&self->bot, -1);
25 }
26 }

Figure 4. The new lock-free algorithm for syn-
chronization between thief and victim.

x64) support atomic updates of also two adjacent memory
words (e.g., 128 consecutive bits on a 64-bit word architec-
ture).

By utilizing the atomic operations and a careful com-
position of the involved fields of the Task data structure,
we have managed to design a lock-free scheme of the syn-
chronization part needed in stealing. As in Wool, for per-
formance reasons the victim uses weaker and faster atomic
primitives than the thieves, and in addition the stealing sta-
tus can now be fully trusted directly by the victim without
any extra synchronization procedure.

By utilizing the DWCAS operation we can design a lock-
free algorithm of the stealing synchronization, see Figure 4
for a description of the new algorithm. In the task descrip-
tor, the field balarm is placed directly after the field f and
can thus be updated together by the steal function. If the
victim has decided to execute the task itself, the field f has
been set to INLINED which is noted by the DWCAS op-
eration that fails. At the same time, the DWCAS operation
will fail if another thief already has managed to update the
balarm field to STOLEN, thus guaranteeing that each task
can only be stolen once.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Threads

Fib 45 – Intel Core i7

LOCK-FREE
ORIGINAL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

Sp
ee

du
p

(c
om

pa
re

d
to

 o
ne

 th
re

ad
)

Threads

Fib 45 – Intel Core i7

LOCK-FREE
ORIGINAL

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e
(m

s)

Threads

QS 10000000 – Intel Core i7

LOCK-FREE
ORIGINAL

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

Sp
ee

du
p

(c
om

pa
re

d
to

 o
ne

 th
re

ad
)

Threads

QS 10000000 – Intel Core i7

LOCK-FREE
ORIGINAL

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Threads

Stress 200 17 – Intel Core i7

LOCK-FREE
ORIGINAL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

Sp
ee

du
p

(c
om

pa
re

d
to

 o
ne

 th
re

ad
)

Threads

Stress 200 17 – Intel Core i7

LOCK-FREE
ORIGINAL

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Threads

MM4 500 5 – Intel Core i7

LOCK-FREE
ORIGINAL

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

Sp
ee

du
p

(c
om

pa
re

d
to

 o
ne

 th
re

ad
)

Threads

MM4 500 5 – Intel Core i7

LOCK-FREE
ORIGINAL

Figure 5. Experiments on a 8-way Intel Core i7 processor system.

3. Experiments

We have performed experiments on a contemporary
multi-core platform in order to estimate the possible per-
formance benefits of replacing the synchronization in Wool
with the new lock-free one. For comparison, the same
benchmarks as in [3] have been executed on an Intel Core
i7950 3 GHz with 6 GB DDR3 1333 MHz system running
Linux 2.6. This processor has 4 cores, capable of executing
2 threads each. The benchmarks used were Fibonacci (fib),
Quicksort (qs) and Stress. In addition we also used a Matrix
multiplication (mm4) benchmark. The results of the bench-
marks are shown in Figure 5, with actual execution time to
the left and speedups (relative to executing one thread of the
corresponding implementation) to the right.

Apparently, benchmarks with low memory utilization
(i.e., fib and stress) scale almost ideally along the cores, and
benchmarks with higher memory utilization (i.e., qs) scales
fairly well with exception from the mm4 benchmark. One
explanation for the bad scaling is that the mm4 benchmark
has a considerably higher fraction of steals than inline ex-
ecutions. Notably is that the lock-free implementation per-
forms significantly better on the fib and mm4 benchmarks
and the same performance as the original lock-based imple-
mentation on the other benchmarks.

4. Conclusions

We have designed a lock-free synchronization for the
Wool library that has been introduced for light-weight task
execution. By replacing the highly optimized lock-based
synchronization in Wool with the new lock-free scheme, we
get a faster and composable, thanks to not using blocking,
work stealing scheme. Our experiments were conducted us-
ing a set of benchmarks executed on an Intel Core i7 plat-
form. This work was introduced in order to verify our con-
jecture that even highly optimized lock-based synchroniza-
tion schemes, like the one that the original Wool uses, can
be further optimized using lock-free programming.

Interesting future work is to compare with other task
management libraries and implementation on other archi-
tectures.

References

[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In ACM
Symposium on Parallel Algorithms and Architectures, pages
119–129, 1998.

[2] D. Chase and Y. Lev. Dynamic circular work-stealing deque.
In SPAA ’05: Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures,
pages 21–28, New York, NY, USA, 2005. ACM.

[3] K.-F. Faxén. Wool - a work stealing library. In Proceed-
ings of the First Swedish Workshop on Multi-Core Computing
(MCC08), pages 117–124, 2008.

[4] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded language. In Proceedings
of the ACM SIGPLAN 1998 conference on Programming lan-
guage design and implementation (PLDI ’98), pages 212–223,
1998.

[5] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 11(1):124–149, Jan.
1991.

[6] M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idem-
potent work stealing. In PPoPP ’09: Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice of par-
allel programming, pages 45–54, New York, NY, USA, 2009.
ACM.

[7] P. Tsigas and Y. Zhang. Integrating non-blocking synchroni-
sation in parallel applications: Performance advantages and
methodologies. In Proceedings of the 3rd ACM Workshop on
Software and Performance, pages 55–67. ACM Press, 2002.

