Zygomycetes and cellulose residuals: hydrolysis, cultivation and applications

PATRIK R. LENNARTSSON

Akademisk avhandling som för avläggande av teknologie doktorsexamen vid Chalmers tekniska högskola föras vid offentlig disputation den 9 februari 2012, klockan 10.00 i KS101, Kemigården 4, Göteborg.

Avhandlingen föras på engelska.

Fakultetsopponent är professor Sudip Rakshit, Asian Institute of Technology, Bangkok, Thailand.

Institutionen för kemi- och bioteknik
CHALMERS TEKNIKA HÖGSKOLA
412 96 Göteborg
Telefon 031-772 1000

Ingenjörshögskolan
HÖGSKOLAN I BORÅS
501 90 Borås
Telefon 033-435 4000
Zygomycetes and cellulose residuals: hydrolysis, cultivation and applications

Patrik R. Lennartsson
School of Engineering, University of Borås
Department of Chemical and Biological Engineering, Chalmers University of Technology

Abstract

Zygomycetes is a class of fungi living worldwide as saprobes, as part of mycorrhizae, and as parasites. Humans have used some zygomycetes for centuries in the production of traditional foods, e.g. Indonesian tempe. In the present thesis, the experimental focus was on two zygomycetes strains, Mucor indicus CCUG 22424 and Rhizopus sp. IT.

One of the distinguishing features of M. indicus is its dimorphism. The different cell forms were influenced by the culturing conditions. After inoculation, when the initial spore concentration was high (6-8×10⁶ spores/ml), yeast-like growth dominated under anaerobic conditions. With a smaller inoculum, yielding 1-2×10⁵ spores/ml, and access to oxygen, filamentous forms dominated. Only negligible differences in ethanol yield (390-420 mg/g hexoses), productivity (3-5 g/l/h), and inhibitor tolerance were observed. Differential expressions of probably four genes were observed between the yeast-like and filamentous growth forms.

Lignocelluloses are a suitable substrate for cultivating zygomycetes, as they occur in abundance, particularly since zygomycetes, unlike Saccharomyces cerevisiae, can utilise pentoses. Lignocelluloses require pretreatment to achieve efficient hydrolysis of the cellulose. N-methylmorpholine-N-oxide (NMMO) was tested for pretreatment of spruce and birch. Reducing wood chip size and/or prolonged pretreatment, promoted hydrolysis yield. Best yields were achieved from <2 mm chips and 5 h pretreatment. The hydrolysate was used for fermentation with M. indicus, resulting in 195 and 175 mg ethanol/g wood, and 103 and 86 mg fungal biomass/g wood, from spruce and birch respectively.

Orange peel is another potential substrate. However, the hydrolysate contained 0.6 % (v/v) D-limonene, ten times higher than the concentration inhibiting S. cerevisiae. M. indicus was more resistant and successfully fermented the hydrolysate, producing 400 mg ethanol/g hexoses and 75 mg fungal biomass/g sugars. Both M. indicus and Rhizopus sp. grew in 1.0 % and 2.0 % D-limonene, although the latter was unable to grow in the hydrolysate.

A third substrate was also used, spent sulphite liquor (SSL), which is a by-product from sulphite paper pulp mills. The SSL was diluted to 50 % and used for airlift cultivations of Rhizopus sp. In 1.0 vvm aeration, up to 340 mg biomass/g sugars was produced. Prolonged cultivations generally decreased the protein (from 500 to 300 mg/g) and lipid (from 70 to 20 mg/g) contents. In contrast, the cell wall fraction, measured as alkali-insoluble material (AIM), increased (160-280 mg/g), as did the glucosamine (GlcN) content (220-320 mg GlcN/g AIM). The produced fungal biomass could serve as animal feed, e.g. for fish.

Keywords: Zygomycetes, fungi, lignocelluloses, ethanol, fish feed, animal feed, dimorphism, airlift, pretreatment