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Abstract Regression conformal prediction produces prediction intervals that are valid, i.e.,
the probability of excluding the correct target value is bounded by a predefined confidence
level. The most important criterion when comparing conformal regressors is efficiency; the
prediction intervals should be as tight (informative) as possible. In this study, the use of
random forests as the underlying model for regression conformal prediction is investigated
and compared to existing state-of-the-art techniques, which are based on neural networks and
k-nearest neighbors. In addition to their robust predictive performance, random forests allow
for determining the size of the prediction intervals by using out-of-bag estimates instead of
requiring a separate calibration set. An extensive empirical investigation, using 33 publicly
available data sets, was undertaken to compare the use of random forests to existing state-
of-the-art conformal predictors. The results show that the suggested approach, on almost all
confidence levels and using both standard and normalized nonconformity functions, produced
significantly more efficient conformal predictors than the existing alternatives.
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1 Introduction

One of the main motivations for using the conformal prediction (CP) framework (Vovk et al.
2006) is that it provides guarantees for the prediction error; the probability of making incorrect
predictions is bounded by a user-provided confidence threshold. In contrast to other learning
frameworks that provide similar types of guarantees, e.g., PAC learning (Valiant 1984), CP
makes it possible to assess the uncertainty of each single prediction. Hence, rather than just
providing a bound on the prediction error for the entire distribution, CP allows for providing
different bounds for different instances, something which may be very valuable in many
practical applications. For example, knowing that the error of a certain model for predicting
the stock price is bounded by 100 dollars with 95 % probability, is not as informative as
knowing that for the specific stock we are interested in, the prediction error is, in fact,
bounded by ten dollars, i.e., this particular stock is actually easier to predict than the average
one. Similarly, in the medical domain, it is of course important to be able to assess the
confidence in predictions related to individual patients instead of groups of patients.

CP employs some underlying predictive model, which may have been generated by any
standard learning algorithm, for obtaining prediction regions rather than single point pre-
dictions. A prediction region corresponds to a set of class labels in a classification context,
and to an interval in a regression context. A prediction error, in this framework, occurs when
the correct label of a (test) instance is not included in the prediction region. The guarantee
given by the conformal prediction framework, under the standard i.i.d. assumption, is that the
probability of making an error is bounded by a predetermined confidence level. This means
that the number of errors can be controlled, typically reducing the error level by increasing
the sizes of the prediction regions or vice versa. There is an obvious resemblance of the
conformal prediction framework to standard statistical hypothesis testing, where the type I
and II errors are controlled by the choice of significance level.

Since all conformal predictors are valid, i.e., the probability of excluding the correct label
is bounded by the confidence level, the main criterion when comparing different conformal
predictors is their efficiency, i.e., the sizes of output prediction regions. Efficiency is, for
classification, often measured as the (average) number of labels present in the prediction
sets, and for regression as the (average) size of the intervals.

CP relies on real-valued functions, called nonconformity functions, that provide estimates
for how different a new example is from a set of old examples. In a predictive modeling
scenario, nonconformity functions use the underlying model to determine how strange the
relationship between the feature vector (the input) and an output value for a certain new
instance is, compared to a set of previously observed instances.

It is possible to design many different nonconformity functions for a specific predictive
model, and each of them will define a different conformal predictor. All of these conformal
predictors will be valid, but there may be significant differences in terms of efficiency. In the
extreme case, even a function that returns the same nonconformity score for all examples
will be valid, but the prediction regions will be very wide.

CP was originally introduced as a transductive approach for support vector machines
(Gammerman et al. 1998). Transductive CP requires learning a new model for each new test
instance to be predicted, which of course may be computationally prohibitive. For this reason,
inductive conformal prediction (ICP) was suggested (Vovk et al. 2006). In ICP, which is the
focus of this study, only one model is induced from the training data and that model is then used
for predicting all test instances. In ICP, however, the calculation of the nonconformity scores
requires a separate data set (called the calibration set) that was not used by the algorithm
when learning the model. Consequently, it becomes very important how the training data is
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divided into the proper training set and the calibration set; using too few calibration instances
will result in imprecise confidence values, while too few proper training instances may lead
to weaker underlying models.

Looking specifically at ICP regression, there are very few published papers providing
a systematic evaluation of different underlying models and nonconformity functions. As a
matter of fact, until now, most studies focus on one specific underlying model, and use a
very limited number of data sets, making them serve mainly as proofs-of-concept; see e.g.,
Papadopoulos et al. (2002); Papadopoulos and Haralambous (2011). With this in mind, there
is an apparent need for larger studies, explicitly evaluating techniques for producing efficient
conformal predictors. Such studies should preferably explore various learning algorithms and
use a sufficiently large number of data sets to allow for statistical inference, thus making it
possible to establish best practices. In this paper, we compare using random forests (Breiman
2001) as the underlying model for conformal prediction regression to existing state-of-the-
art conformal regressors, which are based on artificial neural networks (ANN) and k-nearest
neighbors (kNN). We investigate a number of nonconformity functions, and we specifically
examine the option to use out-of-bag estimates for the necessary calibration.

In summary, the main contributions of this paper are:

– a novel method for regression conformal prediction, which utilizes random forests
together with a non-conformity function that exploits out-of-bag examples as a cali-
bration set;

– the first large-scale empirical investigation of methods for regression conformal pre-
diction, which include state-of-the-art learning algorithms and multiple non-conformity
functions that are evaluated on a large number of datasets;

– significant findings concerning the relative efficiency of different conformal predictors,
which provide new evidence for what may be considered best practices for regression
conformal prediction.

In the next section, we formalize the conformal prediction framework and discuss related
work. In Sect. 3, we describe the proposed approach for regression conformal prediction
using random forests as well as competing state-of-the-art approaches. The setup for, and the
results from, the empirical investigation are presented in Sect. 4. Finally, we summarize the
main conclusions from the study and outline directions for future work in Sect. 5.

2 Background

In this section, we first provide a formalization of inductive conformal prediction, which is
the theoretical foundation for this paper. We then briefly discuss its relation to alternative
frameworks and summarize the main related previous studies upon which our study builds.

2.1 Inductive conformal prediction

An inductive conformal classifier or regressor only needs to be trained once, using the fol-
lowing scheme:

1. Divide the training set Z = {(x1, y1), . . . , (xl , yl)} into two disjoint subsets Zt (a proper
training set) and Zc (a calibration set):

– Zt = {(x1, y1), . . . , (xm, ym)}
– Zc = {(xm+1, ym+1), . . . , (xl , yl)}
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2. Train the underlying model hZ using Zt .
3. For each calibration instance (xi , yi ) ∈ Zc:

– let hZ predict the output value for xi so that ŷi = hZ (xi ) and
– calculate the nonconformity score αi using the nonconformity function.

For a novel (test) instance, the input pattern x j is supplied to the underlying model,

resulting in a prediction ŷ j . Then a nonconformity score α
ỹ
j is produced for every tentative

target value ỹ. The p-value of each tentative target ỹ is then calculated by comparing α
ỹ
j to

the nonconformity scores of the calibration set S = {α1, . . . , αq}:

p(ỹ) = #{zi ∈ Zc | αi ≥ aỹ
j } + 1

|Zc| + 1
. (1)

If p(ỹ) < δ, the probability for ỹ being the true target for x j is smaller than δ, i.e., ỹ can be
excluded from the prediction region, at that confidence level. In classification, ỹ represents a
possible class label, and all possible labels are tested one at a time. In regression, we cannot
consider every possible output value in that manner, so a conformal regressor will instead
directly establish the prediction interval, for each test instance, given the confidence level.
In regression, the nonconformity function is most often simply the absolute error, see e.g.,
Papadopoulos and Haralambous (2011); Papadopoulos et al. (2002, 2011):

αi = |yi − ŷi | . (2)

Then, given a significance level δ and a set of calibration scores S = {α1, . . . , αq}, we
locate the smallest αs(δ) ∈ S that satisfies the equation

#{zi ∈ Zc | αi < αs(δ)} + 1

|Zc| + 1
≥ 1 − δ . (3)

Since it is not possible to consider each ỹ in regression, it is also not possible to calculate
the nonconformity scores α

ỹ
j for the test instance x j . Instead, αs(δ) forms a probabilistic

bound for the nonconformity scores at significance level δ; that is, with probability 1− δ, the
nonconformity of x j will be at most αs(δ). Thus, at significance δ, we can reject any label for

which α
ỹ
j > αs(δ), and must conversely include all labels for which α

ỹ
j ≤ αs(δ). Using (2),

α
ỹ
j = αs(δ) exactly when |y − ỹ| = αs(δ), hence, by formulating the prediction region as

Ŷ δ
j = ŷ j ± αs(δ), (4)

where s(δ) is found from (3) above, Ŷ δ
j will cover the true output y j with probability 1 − δ.

It must be noted that when using (2) and (4), the conformal regressor will, for any specific
significance level δ, always produce prediction intervals of the same size for every x j ; i.e.,
it does not consider the difficulty of a certain instance x j in order to provide as informative
predictions as possible, which often is a key motivation for using conformal prediction in the
first place. It is, however, possible to employ normalized nonconformity functions, where
the absolute error is scaled using the expected accuracy of the underlying model; see e.g.,
Papadopoulos and Haralambous (2011); Papadopoulos et al. (2011). The motivation for this,
from a conformal prediction standpoint, is that if two instances have identical conformity
scores using (2), but the first is expected to be more accurate than the second, then the second
is actually stranger (more nonconforming) than the first. Using a normalized nonconformity
function, the resulting prediction intervals will be smaller for instances that are deemed
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“easy” and larger for “harder” instances. When using a normalized nonconformity function,
nonconformity scores are calculated using:

αi = |yi − ŷi |
σi

, (5)

where σi is an estimate of the accuracy of the underlying model for ŷi . Naturally, there are
several ways to estimate the accuracy; one suggestion is to train another model for predicting
the errors; see e.g., Papadopoulos and Haralambous (2011). Other approaches use properties
of the underlying model; see e.g., Papadopoulos et al. (2011). With normalized nonconformity
functions, the prediction interval for Ŷ δ

j is:

Ŷ δ
j = ŷ j ± αs(δ)σ j , (6)

where σ j is an estimate of the accuracy of the underlying model, for that instance.

2.2 Related work

As mentioned in the introduction, there are other machine learning frameworks that provide
some sort of guarantee of the prediction error. Specifically, PAC-learning (Valiant 1984) will
provide upper bounds on the probability of its error with respect to some confidence level.
PAC theory only assumes that the instances are generated independently by some completely
unknown distribution, but for the resulting bounds to be interesting in practice, the data set
must be quite clean. Unfortunately, this is rarely the case for real-world data, which will lead
to very loose bounds, see e.g., Nouretdinov et al. (2001), where the crudeness of PAC theory
is demonstrated. In addition, the PAC bounds are for the overall error and not for individual
predictions. The Bayesian framework can, on the other hand, be used to complement indi-
vidual predictions with probabilistic measures of their quality. These measures are, however,
based on some a priori assumption about the underlying distribution. When the assumed
prior is violated, there is no guarantee that the resulting intervals produced by the Bayesian
methods actually contain the true target as often as indicated by the confidence level, i.e.,
the resulting predictions are not valid. In Papadopoulos et al. (2011), CP is compared to
the popular Bayesian method called Gaussian Processes (GP) (Rasmussen and Christopher
2005). The results show that when the (artificial) data set satisfied the GP prior, the intervals
produced by GP-regression were valid, and slightly tighter than the corresponding intervals
produced by CP. On a number of real-world data sets, however, the predictive regions pro-
duced by GP-regression were no longer valid, i.e., they may become misleading when the
correct prior is not known.

The CP framework has been applied to classification using several popular learning algo-
rithms, such as ANNs (Papadopoulos 2008), kNN (Nguyen and Luo 2012), SVMs (Devet-
yarov and Nouretdinov 2010; Makili et al. 2011), decision trees (Johansson et al. 2013a),
random forests (Bhattacharyya 2011; Devetyarov and Nouretdinov 2010) and evolutionary
algorithms (Johansson et al. 2013b; Lambrou et al. 2011). Although we in this study consider
regression tasks, there is some overlap with previous studies on classification when it comes
to design choices. Specifically, in Johansson et al. (2013a), the underlying learning algorithm
is also decision trees. However, in the previous study, the focus was on how properties of
the algorithm, e.g. split evaluation metric, pruning and the smoothening function, affect the
efficiency of classification trees. In this paper, we instead study forests of regression trees,
and investigate both standard and normalized nonconformity functions in this context. More-
over, the use of out-of-bag estimates for the calibration was suggested for random forests in
Devetyarov and Nouretdinov (2010), and was also used for bagged ANNs in Löfström et al.
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(2013). None of these studies, however, evaluate efficiency in a systematic way while consid-
ering different underlying models and nonconformity functions. In particular, no normalized
nonconformity functions were evaluated in these studies.

There are also a number of studies on conformal prediction for regression, using, for
instance, ridge regression (Papadopoulos et al. 2002) and ANNs (Papadopoulos and Har-
alambous 2010). Two interesting and fairly recent studies do in fact evaluate normalized
nonconformity functions for ANNs (Papadopoulos and Haralambous 2011) and k-Nearest
Neighbors (Papadopoulos et al. 2011). Unfortunately, both studies use very few data sets,
thus precluding statistical analysis. Despite these shortcomings, the suggested approaches
must be regarded as state-of-the-art for ICP regression, making them natural benchmarks to
compare our proposed methods against.

Conformal prediction has also been successfully used in a number of applications where
confidence in the predictions is of concern, including prediction of space weather parameters
(Papadopoulos and Haralambous 2011), estimation of software project effort (Papadopoulos
et al. 2009b), early diagnostics of ovarian and breast cancers (Devetyarov et al. 2012) and
diagnosis of acute abdominal pain (Papadopoulos et al. 2009a).

3 Methods

In this section, we first describe the proposed method for utilizing random forests for regres-
sion conformal prediction, including some variants, and then describe the competing state-
of-the-art approaches.

3.1 Regression conformal prediction using random forests

A random forest (Breiman 2001) is a set of decision trees (Breiman et al. 1984; Quinlan
1986), where each tree is generated in a specific way to introduce diversity among the trees,
and where predictions of the forest are formed by voting. A decision tree is a tree-structured
(directed, acyclic and connected) graph, where each internal (non-leaf) node is labeled with a
test on some attribute, with one arc leading to a unique (child) node for each possible outcome
of the test, and where the leaf nodes of the tree are labeled with values to be predicted. If
the predicted values are (categorical) class labels, the decision tree is called a classification
tree, while if the predicted values are numeric, the tree is called a regression tree. When
using a decision tree to predict a value for an example, starting at the root node, the test
at the current internal node is performed and the arc corresponding to the outcome of the
test is followed, until a leaf node is reached, for which the corresponding predicted value
is returned. For a forest of classification trees, the predicted value is typically formed by
selecting the majority among the predictions of the individual trees, while for a forest of
regression trees, the resulting prediction is typically formed by taking the average of the
individual predictions.

The standard procedure to generate a decision tree is to employ a recursive partitioning, or
divide-and-conquer, strategy, starting with all training examples at the root node of the tree,
and then evaluating all available tests to partition the examples, choosing the one that max-
imizes some evaluation metric, e.g., information gain for classification trees or variance for
regression trees, labeling the current node with this test, partitioning the examples according
to the outcome of the test and continuing building the tree recursively with each resulting
subset, until some termination criterion is met, e.g., all examples in the subset have the same
value on the target attribute, and forming a value to predict from the examples in the subset.
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In order to introduce the necessary diversity among the trees in a random forest, each
tree is trained on a bootstrap replicate of the original training set (Breiman 1996), i.e., a
new training (multi-)set, or bag, of the same size as the original set is formed by randomly
selecting examples with replacement from the original set. This means that some of the
original examples may be duplicated in the bootstrap replicate, while other examples are
excluded. The latter ones, for a specific tree, are said to be out-of-bag for that tree. To further
increase diversity, each tree in the forest is created using the random subspace method (Ho
1998), i.e., only a randomly selected subset of all available attributes are evaluated when
choosing the split at each internal node during the construction of the decision tree.

In this study, the implementation of the random forest algorithm from the MatLab 1

statistics toolbox, called TreeBagger, was used. The parameters were set to the default values
for regression trees, i.e., the number of attributes to evaluate at each internal node was set
to one third of the total number of attributes and mean square error was used as the split
criterion.

Given that random forests are frequently observed to result in state-of-the-art predictive
performance, see e.g., Caruana and Niculescu-Mizil (2006), random forest models can be
expected to be more accurate than the underlying models that are currently used in regression
conformal predictors, i.e., kNN and ANN models. It is, however, not obvious whether or not
the use of random forests will result in smaller prediction intervals, when the models are
used as the basis for CP. Another important question is whether or not anything could be
gained from using out-of-bag estimates for the calibration, something which is an option for
random forests, but not for the previous model types, which have to resort to using a separate
calibration set.

In this study, we investigate nonconformity functions that are based on absolute errors
(2). The first two nonconformity functions that will be considered for random forests use
no normalization, i.e., the intervals are produced using (4). The first approach, called RFi,
employs standard ICP, i.e., a separate calibration set is used. In the second approach, called
RFo, out-of-bag instances are instead used for the calibration. This, of course, makes it
possible to use all training instances for both the training and the calibration. More specifically,
when producing the nonconformity score for a calibration instance zi , the ensemble used for
producing the prediction ŷi consists of all trees that were not trained using zi , i.e., zi was
out-of-bag for those trees.

It should be noted that when using out-of-bag instances instead of a separate calibration
set, the actual underlying model, i.e., the random forest, is no longer used when calculating
the nonconformity scores and p-values. In fact, various subsets of the forest are used for the
out-of-bag-instances, but the entire forest is used for the test instances. In other words, the
nonconformity functions applied to the calibration and test instances are defined differently
as

αcalibration = |y − hθ(x)| (7)

αtest = |y − h(x)| , (8)

where θ is a random factor determining the subset of trees for which x is out-of-bag. In general,
the use of different nonconformity functions could clearly cause the resulting conformal
predictor to become invalid, i.e., the probability of excluding the true target value would no
longer be bounded by the provided confidence level. However, we argue that the conformal
predictor in our particular setting, i.e., when using out-of-bag estimates for the calibration,
must be valid. In principle, the same random component may also be used when predicting

1 www.mathworks.com.
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the target value for the test instance (by only considering a random subset of the forest when
predicting the target of the test instance), and in that case the same nonconformity function (7)
would obviously be used for all instances, hence not violating the assumptions underlying the
ICP framework. When instead using the whole forest for the test instance, as proposed here,
one would expect the predicted values to be closer to the true target, than when using a random
subset of the trees. In fact, it is well-known that out-of-bag error estimates tend to overestimate
the actual error made by a random forest, simply because a larger forest is normally a
stronger model. Not until the random forest is so large that the randomized sub-ensembles
will be as accurate as the entire forest, is this bias eliminated. Consequently, the expected
nonconformity of a test instance is less than (or for a very large forest equal to) the expected
nonconformity of a calibration instance, i.e., the probability of including nonconforming
targets in the prediction region is unchanged or increased when using the whole forest. Hence,
rather than increasing the risk for generating an invalid conformal predictor, one would
expect the conformal predictor using out-of-bag instances to be conservative. Therefore,
the proposed setup should be, if anything, less efficient than if the whole forest was used
together with additional calibration instances. Naturally, the validity will be investigated in
the experimentation in order to support this reasoning empirically.

We also investigate three normalized nonconformity functions, i.e., the prediction regions
may vary for different test instances. RFia and RFoa both use an additional (linear) ANN
to predict the logarithm of the error of the underlying model, for each instance. RFia is
identical to the procedure used in Papadopoulos and Haralambous (2011) and Papadopoulos
and Haralambous (2010), but of course uses a random forest as the underlying model instead
of an ANN. The resulting nonconformity function is:

αi = |yi − ŷi |
exp(μi ) + β

, (9)

where μi is the prediction of the value ln(|yi − ŷi |) produced by the linear ANN, and β

is a parameter, used to control the sensitivity of the nonconformity measure. Naturally, this
ANN was trained on all pairs (x j , ln(|y j − ŷ j |), from the proper training set. Using this
nonconformity function, the prediction intervals become:

Ŷ δ
j = ŷ j ± αs(δ)(exp(μ j ) + β) . (10)

The only difference between RFia and the novel setup RFoa is that RFia uses a separate
calibration set, while RFoa uses the out-of-bag instances for the calibration, i.e., the additional
ANN is trained using the logarithm of the out-of-bag errors as targets. RFok, finally, is another
novel setup, which instead of employing an additional ANN for predicting the logarithm of
the error, considers the average out-of-bag error (normalized with the Euclidean distance) for
the k closest instances. That is, RFok is based on the same Eq. (9), but here, μi is defined as
the logarithm of the average out-of-bag error of the k nearest neighbors. The motivation for
this novel, and quite straightforward nonconformity function, is that if neighboring instances
have small out-of-bag errors, the prediction for the new instance should be accurate, i.e.,
that instance should be considered as relatively easy. The exact number of neighbors to use
is optimized (between 1 and 45) for each fold based on the average interval size of the
resulting conformal regressor. This fitting is similar to when the ANN is trained to learn the
out-of-bag errors. Naturally, since both RFoa and RFok utilize the out-of-bag estimates for
the calibration, they make it possible to use all available data as a proper training set for the
random forest.

Since the normalization functions used in RFoa and RFok depend on the out-of-bag errors
of the calibration instances, one may again raise concerns on the validity of the corresponding
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conformal regressors. Starting with RFok, we claim that this normalization is unbiased. More
specifically, the difficulty of any instance (calibration or test) is estimated in the same manner,
using its k closest calibration set neighbors, not counting a calibration instance as its own
closest neighbor. Hence, for both test and calibration instances, the difficulty estimate is
based on a set of examples that does not include the instance to which the estimate applies.
Consequently, there is no reason to suspect that the estimated difficulty of a test instance
is any less accurate than that of a calibration instance. The error rate of RFok is thus not
expected to be affected by the normalization function used, and RFok is therefore expected
to keep the (slightly conservative) validity of the RFo nonconformity function it is based
on. In RFoa, on the other hand, the difficulty-estimating ANN model has been trained on
the out-of-bag error of all calibration instances, i.e., when predicting the difficulty of some
calibration instance, that particular instance will have been used in the training of the ANN,
whereas the same does not apply to any test instance. So, in this case, there is indeed a bias
towards the calibration set.

Consequently, for RFoa there are two forces working in opposite directions; the inherent
conservatism in using out-of-bag estimates and the bias towards the calibration set when
estimating the difficulty of an instance. When the latter bias is small, e.g., if the ANN is
relatively weak, the resulting error rate will most likely be smaller than the confidence level,
but for a larger bias, the error rate may actually be higher than the confidence level. With this
in mind, it is important to recognize that RFoa is the only setup evaluated for which there
is a known risk that validity is not guaranteed. Again, the empirical investigation will study
how the error rate is affected by these nonconformity functions in practice.

3.2 Competing approaches

In the empirical evaluation, we compare the different variants of our suggested method to the
state-of-the-art techniques from Papadopoulos and Haralambous (2011) and Papadopoulos
et al. (2011). In both these papers, ICP methods were used, i.e., separate calibration sets were
required. The first competing method, suggested and described in detail in Papadopoulos
and Haralambous (2011), uses an ANN as the underlying model. In the most basic format
(here referred to as ANN), it uses the standard nonconformity function (2) and produces
intervals using (4). When using a normalized nonconformity function, the method, which
is here referred to as ANNa, uses a linear ANN to predict the logarithm of the errors, and
produces intervals using (9) and (10).

The second competing method is based on distance-weighted k-nearest neighbor regres-
sors, and is suggested and described in Papadopoulos et al. (2011). In the basic format, this
method (referred to as kNN) also uses the standard way of calculating nonconformity scores
(2) and prediction intervals (4). In Papadopoulos et al. (2011), the authors evaluate a number of
novel normalized nonconformity functions. The most efficient (here called kNNc) combines
two different aspects of kNN, in order to produce as good estimates of the accuracy as pos-
sible. More specifically, the prediction from a kNN regressor is deemed to be more accurate,
for a specific instance, if (i) the k nearest neighbors are close to the current test instance and
(ii) the k nearest neighbors agree in their predictions. The resulting nonconformity function is

αi = |yi − ŷi |
exp(γ λi ) + exp(ρξi )

, (11)

where λ and ξ are the measures of accuracy (difficulty) while γ and ρ are parameters con-
trolling the sensitivity of each measure. Consequently, the prediction intervals are calculated
using
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Ŷ δ
j = ŷ j ± αs(δ)(exp(γ λ j ) + exp(ρξ j )) . (12)

It must be noted that an internal normalization of the measures is used to make sure that
the two measures are of the same magnitude and robust over all data sets. For a detailed
discussion on these and other difficulty estimators, see Papadopoulos et al. (2011).

4 Empirical evaluation

In this section, we first describe the experimental setup, i.e., what algorithms, data sets and
performance metrics have been chosen, and then report the results from the experiment.

4.1 Experimental setup

In the first (main) experiment, the competing methods were re-implemented, and a large-
scale study, using 33 publicly available data sets was performed. The considered data sets
are small to medium sized; ranging from approximately 500 to 10, 000 instances. All but
one data set are from the UCI Bache and Lichman (2013), Delve Rasmussen et al. (1996) or
KEEL Alcalá-Fdez et al. (2011) repositories. The data sets are described in Table 1, where
#inst. is the number of instances, #attrib. is the number of input attributes and #calInst, is
the number of instances used for calibration in the standard ICP settings.

In the evaluation, we look at standard and normalized nonconformity functions separately.
Naturally, the normalized nonconformity functions are the most important, since they provide
prediction intervals of different sizes. In the second experiment, we employed the exact same
settings as in the previous studies, including using only a handful of data sets, and compare
our results directly to the published results.

In Experiment 1, a 10×10-fold cross-validation scheme was used. The number of cali-
bration instances was set to

q = 100 ×
⌊ |Z |

400

⌋
− 1, (13)

where Z is the full training set, i.e., starting at 99 calibration instances for data sets with
400–799 examples, and adding 100 calibration instances for every additional 400 examples
in the full training set. Before the experimentation, all target values were normalized to [0, 1],
in order to obtain more readable efficiency comparisons across data sets. With this scaling,
the size of a prediction interval, of course, expresses the fraction of the target range covered
by the interval.

Regarding parameter values, we elected to use identical settings over all data sets and,
when applicable, methods. Specifically, all random forests consisted of 500 random trees. For
kNN regressors, k was set to 25, since some preliminary experiments showed that this actually
produced higher efficiency than selecting different k-values based on internal cross-validation
results. Similarly, all ANNs had exactly 20 hidden units. The sensitivity parameters had to
be adjusted based on the much smaller normalized target ranges. Again, some preliminary
experiments showed that the exact values were not vital, so the following values were used
in Experiment 1: β = 0.01 and γ = ρ = 1.0.

Two things were measured for each method and data set in the experiments; the error rate,
i.e., the fraction of target values in the test set that fall outside the predicted regions, and the
efficiency, i.e., the size of the predicted intervals. For valid conformal predictors, the error rates
should not (in the long run) exceed the chosen confidence threshold. Hence, by investigating
the error rates, we may confirm (or reject) that a certain conformal predictor actually is
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valid. Note that this is here considered to be a binary property, i.e., we do not consider one
method to be more valid than another. Given that we have a set of valid regression conformal
predictors, the perhaps most interesting aspect to compare is the size of the predicted regions,
as this directly corresponds to how informative these regions are. Such a comparison could
be done in different ways, e.g., comparing extreme values, but we have opted for comparing
the average sizes over all prediction regions. In fact, we report the median value from the ten
runs of ten-fold cross-validation.

In order to be able to do a direct comparison with published results, we used the same
settings for our methods in Experiment 2 as originally employed for the specific data sets,

Table 1 Data set characteristics Name #inst. #attrib. #calInst. Origin

abalone 4177 8 899 UCI
anacalt 566 7 99 KEEL

bank8fh 8192 8 1799 Delve

bank8fm 8192 8 1799 Delve

bank8nh 8192 8 1799 Delve

bank8nm 8192 8 1799 Delve

boston 506 13 99 UCI

comp 8192 12 1799 Delve

concreate 992 8 199 UCI

cooling 768 8 99 UCI

deltaA 7129 5 1599 KEEL

deltaE 9517 6 2099 KEEL

friedm 1200 5 199 KEEL

heating 768 8 99 UCI

istanbul 536 7 99 UCI

kin8fh 8192 8 1799 Delve

kin8fm 8192 8 1799 Delve

kin8nh 8192 8 1799 Delve

kin8nm 8192 8 1799 Delve

laser 993 4 199 KEEL

mg 1385 6 299 Flake and Lawrence (2002)

mortage 1048 15 199 KEEL

plastic 1055 2 199 KEEL

puma8fh 8192 8 1799 Delve

puma8fm 8192 8 1799 Delve

puma8nh 8192 8 1799 Delve

puma8nm 8192 8 1799 Delve

quakes 2178 2 399 KEEL

stock 950 9 199 KEEL

treasury 1048 15 199 KEEL

wineRed 1359 11 299 UCI

wineWhite 3961 11 799 UCI

wizmir 1460 2 299 KEEL
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Table 2 Error rates for standard nonconformity functions

Error rates

Confidence 90 % 95 % 99 %

Technique ANN kNN RFi RFo ANN kNN RFi RFo ANN kNN RFi RFo

abalone .101 .101 .101 .100 .050 .051 .051 .050 .010 .010 .009 .010

anacalt .095 .098 .100 .095 .051 .049 .050 .050 .012 .010 .009 .009

bank8fh .100 .100 .099 .099 .050 .050 .050 .049 .010 .010 .010 .010

bank8fm .100 .100 .101 .098 .050 .051 .050 .049 .010 .010 .010 .010

bank8nh .099 .099 .100 .100 .050 .050 .050 .050 .010 .010 .010 .010

bank8nm .101 .100 .100 .100 .050 .050 .050 .049 .010 .010 .010 .010

boston .100 .104 .103 .097 .048 .046 .049 .047 .010 .008 .009 .008

comp .101 .100 .100 .099 .050 .050 .050 .049 .010 .010 .010 .010

concreate .102 .102 .101 .097 .053 .052 .052 .047 .012 .010 .010 .008

cooling .094 .096 .099 .101 .047 .049 .048 .047 .008 .010 .010 .008

deltaA .100 .100 .100 .100 .049 .049 .050 .050 .010 .010 .009 .010

deltaE .100 .099 .100 .100 .050 .049 .049 .050 .010 .010 .010 .010

friedm .100 .103 .104 .102 .049 .052 .052 .049 .010 .011 .010 .009

heating .106 .101 .101 .098 .050 .050 .049 .049 .012 .009 .013 .007

istanbul .096 .093 .097 .100 .051 .047 .048 .049 .010 .011 .010 .009

kin8fh .099 .100 .100 .098 .050 .049 .050 .049 .010 .010 .010 .010

kin8fm .101 .101 .100 .097 .050 .051 .050 .049 .011 .010 .010 .010

kin8nh .099 .099 .099 .099 .050 .050 .051 .050 .010 .010 .010 .010

kin8nm .100 .100 .100 .098 .050 .051 .051 .049 .009 .010 .010 .010

laser .098 .102 .102 .098 .046 .048 .053 .050 .010 .009 .010 .008

mg .098 .096 .098 .097 .050 .050 .048 .049 .009 .010 .009 .009

mortage .103 .100 .101 .098 .051 .052 .054 .048 .011 .011 .011 .009

plastic .104 .103 .099 .101 .049 .050 .050 .050 .010 .008 .009 .010

puma8fh .101 .102 .101 .100 .051 .051 .051 .050 .010 .010 .010 .010

puma8fm .100 .100 .100 .099 .050 .049 .050 .050 .010 .010 .010 .010

puma8nh .100 .101 .100 .100 .050 .051 .050 .050 .010 .010 .010 .010

puma8nm .102 .098 .100 .097 .051 .050 .050 .048 .010 .010 .010 .010

quakes .102 .102 .104 .100 .053 .053 .053 .049 .011 .011 .010 .010

stock .105 .101 .101 .095 .052 .051 .050 .047 .011 .011 .010 .009

treasury .103 .103 .105 .097 .052 .052 .053 .048 .012 .010 .009 .009

wineRed .100 .099 .097 .100 .049 .050 .050 .049 .009 .010 .010 .010

wineWhite .100 .101 .100 .099 .051 .050 .050 .050 .010 .010 .010 .010

wizmir .098 .101 .097 .099 .051 .050 .049 .048 .011 .010 .010 .010

Mean .100 .100 .100 .099 .050 .050 .050 .049 .010 .010 .010 .009

with regard to number of folds and number of calibration instances. In addition, in this
experiment, the targets were not normalized. It may be noted that parameters like k in kNN
and the number of hidden neurons in the ANNs, in the original studies, were optimized based
on accuracy results using internal cross-validation. All sensitivity parameters (β, γ and ρ)
were, however, despite the fact that the importance of the parameters will be heavily affected
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Table 3 Efficiency for standard nonconformity functions

Median interval sizes

Confidence 90 % 95 % 99 %

Technique ANN kNN RFi RFo ANN kNN RFi RFo ANN kNN RFi RFo

abalone .238 .239 .233 .235 .320 .337 .317 .320 .541 .590 .550 .540

anacalt .173 .384 .183 .178 .281 .821 .390 .378 .774 1.379 .748 .644

bank8fh .290 .339 .301 .301 .373 .425 .382 .381 .544 .590 .538 .538

bank8fm .132 .226 .138 .136 .164 .279 .174 .171 .234 .374 .267 .259

bank8nh .321 .349 .327 .325 .441 .488 .448 .446 .786 .829 .775 .778

bank8nm .148 .184 .151 .149 .206 .286 .216 .212 .358 .519 .404 .389

boston .239 .299 .214 .203 .329 .483 .325 .311 .658 1.114 .712 .660

comp .118 .105 .089 .088 .151 .140 .117 .116 .233 .272 .196 .195

concreate .285 .384 .228 .215 .352 .465 .283 .263 .523 .687 .478 .499

cooling .269 .266 .181 .179 .335 .391 .225 .222 .444 .570 .308 .300

deltaA .125 .123 .116 .115 .164 .162 .154 .153 .265 .282 .264 .258

deltaE .175 .175 .172 .172 .215 .220 .214 .213 .318 .330 .316 .315

friedm .164 .228 .231 .228 .202 .286 .279 .277 .284 .391 .380 .378

heating .205 .295 .073 .070 .263 .349 .099 .095 .349 .443 .231 .215

istanbul .280 .266 .268 .265 .344 .337 .325 .313 .555 .509 .491 .494

kin8fh .231 .243 .243 .242 .277 .294 .297 .294 .379 .408 .402 .403

kin8fm .101 .134 .147 .143 .122 .168 .182 .177 .169 .248 .262 .254

kin8nh .403 .393 .415 .411 .481 .464 .496 .489 .627 .607 .640 .637

kin8nm .296 .292 .342 .332 .365 .353 .410 .401 .512 .475 .559 .546

laser .080 .077 .059 .054 .123 .149 .104 .095 .397 .607 .381 .337

mg .364 .338 .290 .267 .471 .454 .402 .374 .751 .679 .691 .657

mortage .033 .054 .032 .029 .043 .077 .050 .045 .079 .148 .109 .097

plastic .494 .514 .515 .509 .573 .598 .596 .584 .717 .763 .756 .735

puma8fh .464 .486 .469 .471 .566 .577 .569 .574 .753 .756 .762 .766

puma8fm .209 .275 .210 .210 .254 .328 .255 .254 .349 .434 .350 .349

puma8nh .452 .496 .440 .438 .559 .597 .542 .543 .779 .816 .744 .748

puma8nm .209 .366 .187 .182 .258 .443 .231 .225 .368 .623 .333 .321

quakes .491 .528 .520 .522 .692 .694 .692 .704 1.015 1.040 1.052 1.044

stock .123 .118 .101 .093 .150 .143 .130 .119 .217 .211 .222 .198

treasury .041 .046 .034 .033 .057 .067 .055 .053 .113 .128 .121 .109

wineRed .434 .449 .420 .416 .552 .570 .534 .528 .785 .778 .763 .750

wineWhite .398 .387 .372 .370 .495 .488 .469 .466 .713 .725 .708 .700

wizmir .067 .142 .069 .067 .084 .177 .086 .083 .155 .289 .162 .146

Mean .244 .279 .236 .232 .311 .367 .304 .299 .477 .564 .475 .462

Mean rank 2.45 3.36 2.52 1.67 2.33 3.52 2.48 1.67 2.27 3.45 2.55 1.73

by the actual range of the target values, somewhat ad hoc set to 0.5. Consequently, we too
set β = 0.5 for all our methods in Experiment 2.

All experimentation was performed in MatLab, in particular using the Neural network
and the Statistics toolboxes.

123



168 Mach Learn (2014) 97:155–176

Table 4 Standard
nonconformity functions

Adjusted p values. Numbers in
bold are significant differences at
α = 0.05

90 % 95 % 99 %

RFo versus kNN 6E−07 1E−07 9E−07

RFo versus ANN 0.026 0.057 0.058

RFo versus RFi 0.026 0.051 0.058

RFi versus kNN 0.013 0.002 0.007

RFi versus ANN 0.775 0.634 0.849

ANN versus kNN 0.008 0.001 0.006

4.2 Experimental results

Table 2 demonstrates validity for the methods utilizing standard nonconformity functions.
Looking at the error rates, i.e., the fraction of test instances for which the true target value
falls outside the predicted region, it is reassuring to see that the empirical results for each
and every data set is very close to the predetermined confidence levels. In addition, it can be
noted that RFo tends to be slightly conservative, which supports the reasoning about validity
in Sect. 3.1.

Looking at the interval sizes tabulated in Table 3, while remembering that the output was
normalized so that an interval size of 1.0 would cover the entire range of the target values, it
can be seen from the averaged values that the methods at the 90 % confidence level returned
valid prediction intervals covering, approximately, 25 % of the range. The corresponding
average values for the 95 and 99 % confidence levels are (approximately) 30 and 50 %,
respectively. Clearly, these valid prediction intervals must be considered informative.

In order to compare the efficiency of the five different techniques, and to find out if
there are any statistically significant differences, we used the recommended procedure in
Garcıa and Herrera (2008) and performed a Friedman test Friedman (1937), followed by
Bergmann–Hommel’s dynamic procedure Bergmann and Hommel (1988) to establish all
pairwise differences. Table 4 shows the adjusted p values. The most important result is that
RFo is either significantly or substantially more efficient than all three competing methods,
at the different confidence levels. Specifically, it should be noted that RFo outperformed RFi,
clearly showing that the use of out-of-bag instances for the calibration is beneficial.

Table 5 demonstrates the validity for the methods utilizing normalized nonconformity
functions. Again we see that all methods, including RFoa, produced valid and well-calibrated
conformal predictors. Actually, when using 10×10-fold cross-validation, the empirical error
rates for most individual data sets are very close to the confidence level. Clearly, these
results support our argumentation above that the suggested setup RFok will produce valid
(possibly slightly conservative) conformal regressors. Although RFoa was argued above to
be associated with a risk of producing non-valid predictions due to a bias in the difficulty
estimation function, using the specific settings and parameter values employed here, this
bias turned out to be compensated for by the conservative out-of-bag error estimates, thus
resulting in empirical error rates below the confidence threshold even for this nonconformity
function.

Table 6 shows the interval widths for the normalized nonconformity functions. Comparing
these to the results in Table 3, it is obvious that the prediction intervals here are much smaller,
i.e., applying normalized nonconformity functions does not only provide tuned prediction
intervals for each specific test instance, but the resulting intervals are also substantially tighter
on average. Looking at individual methods, the mean ranks identify three groups, which are
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Table 5 Error rates for normalized nonconformity functions

Error rates

Confidence 90 % 95 % 99 %

Techniques ANNa kNNc RFia RFoa RFok ANNa kNNc RFia RFoa RFok ANNa kNNc RFia RFoa RFok

abalone .100 .103 .102 .101 .103 .050 .050 .051 .050 .052 .009 .010 .010 .010 .012

anacalt .101 .097 .098 .100 .103 .052 .048 .050 .050 .051 .012 .011 .009 .010 .012

bank8fh .101 .099 .100 .100 .101 .050 .050 .050 .049 .051 .010 .010 .009 .010 .011

bank8fm .100 .100 .101 .097 .099 .051 .050 .051 .050 .050 .010 .010 .010 .010 .010

bank8nh .099 .099 .099 .099 .101 .050 .050 .050 .050 .051 .010 .010 .010 .010 .011

bank8nm .101 .101 .100 .099 .098 .051 .050 .050 .049 .048 .010 .010 .010 .010 .010

boston .100 .099 .104 .103 .100 .048 .055 .047 .050 .051 .011 .010 .008 .009 .011

comp .100 .099 .099 .099 .100 .050 .050 .049 .049 .050 .011 .009 .010 .010 .011

concreate .102 .103 .099 .097 .094 .052 .052 .050 .047 .047 .012 .010 .011 .009 .009

cooling .099 .102 .099 .098 .095 .045 .051 .047 .053 .048 .008 .010 .010 .006 .008

deltaA .100 .100 .100 .100 .101 .050 .050 .050 .049 .051 .010 .010 .010 .010 .010

deltaE .099 .100 .100 .100 .101 .049 .050 .050 .050 .051 .010 .010 .010 .010 .010

friedm .100 .103 .101 .101 .098 .048 .053 .050 .050 .048 .009 .010 .011 .009 .007

heating .103 .098 .102 .098 .086 .051 .051 .048 .047 .038 .013 .011 .011 .008 .006

istanbul .097 .098 .098 .106 .110 .050 .047 .048 .053 .054 .009 .010 .009 .011 .010

kin8fh .099 .100 .100 .099 .100 .050 .049 .049 .049 .049 .010 .010 .010 .010 .010

kin8fm .100 .100 .100 .098 .093 .051 .051 .050 .049 .046 .010 .010 .010 .009 .009

kin8nh .100 .099 .100 .099 .099 .050 .050 .050 .050 .049 .010 .010 .010 .010 .010

kin8nm .100 .099 .101 .100 .094 .050 .050 .051 .049 .046 .010 .010 .010 .010 .009

laser .100 .099 .101 .097 .085 .048 .050 .052 .049 .043 .010 .011 .011 .009 .010

mg .098 .099 .099 .098 .093 .048 .049 .049 .050 .047 .010 .009 .009 .010 .014

mortage .103 .099 .103 .099 .088 .053 .050 .053 .050 .041 .010 .009 .010 .009 .006

plastic .102 .102 .097 .101 .095 .049 .050 .050 .052 .044 .009 .010 .010 .009 .013

puma8fh .101 .102 .101 .099 .101 .051 .051 .052 .050 .051 .010 .010 .010 .010 .011

puma8fm .101 .100 .099 .099 .100 .050 .049 .049 .049 .050 .010 .010 .010 .010 .010

puma8nh .101 .101 .100 .100 .101 .050 .050 .051 .050 .051 .010 .010 .010 .010 .010

puma8nm .102 .100 .100 .098 .098 .051 .049 .050 .049 .050 .009 .010 .009 .009 .010

quakes .102 .101 .103 .099 .104 .052 .051 .052 .049 .053 .012 .010 .010 .010 .013

stock .105 .101 .102 .096 .089 .051 .049 .051 .048 .043 .011 .010 .009 .009 .006

treasury .102 .104 .104 .096 .089 .053 .052 .051 .050 .045 .011 .011 .011 .010 .010

wineRed .098 .097 .101 .103 .109 .051 .050 .050 .053 .053 .010 .011 .009 .010 .011

wineWhite .100 .100 .100 .098 .102 .049 .050 .051 .050 .050 .011 .010 .010 .010 .011

wizmir .099 .100 .098 .100 .101 .049 .050 .049 .049 .050 .010 .010 .010 .010 .011

Mean .101 .100 .100 .099 .098 .050 .050 .050 .050 .049 .010 .010 .010 .010 .010

the same for all confidence levels; RFok is the most efficient method, followed by RFoa and
then the other three methods. Clearly, this is a very strong result in favor of using random
forests with out-of-bag examples for calibration.

Studying the adjusted p values in Table 7, we see that RFok is indeed significantly more
efficient (for α = 0.05) than all other methods, with the exception of RFoa, on all three
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Table 6 Efficiency for normalized nonconformity functions

Median interval sizes

Confidence 90 % 95 % 99 %

Techniques ANNa kNNc RFia RFoa RFok ANNa kNNc RFia RFoa RFok ANNa kNNc RFia RFoa RFok

abalone .204 .205 .199 .197 .197 .267 .272 .257 .251 .256 .442 .491 .433 .419 .434

anacalt .128 .296 .124 .109 .058 .200 .514 .251 .217 .109 .611 .985 .578 .433 .283

bank8fh .251 .291 .260 .256 .266 .323 .374 .329 .325 .334 .536 .575 .524 .516 .539

bank8fm .120 .180 .111 .107 .113 .144 .216 .135 .130 .135 .196 .284 .185 .178 .175

bank8nh .269 .293 .278 .272 .284 .382 .420 .382 .376 .393 .765 .796 .749 .753 .753

bank8nm .114 .074 .094 .086 .085 .143 .102 .124 .114 .110 .220 .172 .199 .180 .167

boston .232 .237 .207 .192 .179 .313 .307 .282 .253 .233 .616 .665 .656 .514 .414

comp .109 .081 .080 .079 .077 .136 .104 .102 .099 .098 .202 .176 .159 .155 .154

concreate .254 .352 .218 .200 .191 .316 .415 .266 .243 .237 .483 .559 .414 .401 .402

cooling .173 .183 .088 .082 .070 .204 .214 .113 .101 .081 .289 .289 .161 .148 .103

deltaA .120 .100 .111 .110 .099 .153 .132 .144 .142 .127 .244 .201 .239 .231 .193

deltaE .174 .164 .171 .171 .167 .216 .212 .214 .213 .213 .316 .322 .318 .315 .308

friedm .166 .222 .231 .227 .212 .202 .273 .280 .274 .256 .278 .383 .382 .371 .325

heating .130 .138 .065 .062 .055 .153 .158 .084 .078 .067 .208 .210 .182 .175 .098

istanbul .275 .234 .269 .264 .245 .348 .310 .331 .314 .309 .594 .477 .506 .485 .462

kin8fh .227 .237 .237 .235 .236 .267 .283 .283 .280 .281 .347 .375 .365 .361 .367

kin8fm .100 .130 .141 .136 .129 .120 .158 .170 .164 .151 .163 .222 .226 .217 .194

kin8nh .397 .381 .411 .405 .399 .473 .447 .487 .481 .467 .620 .569 .640 .640 .592

kin8nm .290 .280 .335 .326 .294 .357 .334 .400 .390 .341 .501 .440 .553 .539 .431

laser .074 .047 .053 .049 .038 .110 .062 .090 .082 .050 .309 .115 .300 .253 .138

mg .301 .219 .240 .220 .146 .393 .277 .335 .307 .178 .623 .422 .590 .551 .255

mortage .030 .033 .028 .024 .021 .037 .040 .040 .033 .028 .062 .059 .079 .062 .044

plastic .496 .526 .516 .510 .536 .573 .613 .597 .584 .600 .715 .788 .755 .735 .711

puma8fh .457 .466 .465 .465 .444 .553 .548 .557 .560 .535 .737 .725 .738 .740 .745

puma8fm .207 .265 .209 .208 .201 .253 .313 .252 .251 .242 .346 .413 .343 .344 .326

puma8nh .447 .455 .432 .432 .413 .549 .542 .529 .530 .507 .756 .765 .716 .719 .696

puma8nm .210 .339 .185 .180 .175 .259 .405 .226 .221 .215 .367 .586 .315 .306 .301

quakes .509 .514 .522 .521 .513 .712 .700 .688 .695 .685 1.046 1.169 1.063 1.048 1.058

stock .122 .104 .100 .091 .085 .149 .122 .130 .118 .103 .206 .159 .217 .188 .145

treasury .038 .027 .031 .028 .024 .050 .036 .046 .041 .032 .102 .077 .092 .079 .054

wineRed .452 .402 .428 .422 .426 .560 .521 .531 .528 .529 .821 .738 .772 .739 .726

wineWhite .396 .368 .372 .367 .366 .493 .462 .459 .454 .456 .706 .671 .707 .698 .670

wizmir .067 .117 .068 .066 .065 .084 .143 .085 .081 .080 .143 .209 .153 .141 .127

Mean .228 .241 .221 .215 .206 .288 .304 .279 .271 .256 .442 .457 .434 .413 .375

Mean rank 3.42 3.58 3.64 2.55 1.82 3.70 3.48 3.61 2.52 1.70 3.58 3.67 3.58 2.58 1.61

confidence levels. In addition, RFoa is either significantly or substantially more efficient
than the existing methods utilizing separate calibration sets. Again, it is important to note
that the two setups utilizing the out-of-bag instances clearly outperformed using a separate
calibration set.
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Table 7 Normalized
nonconformity functions

Adjusted p values. Numbers in
bold are significant differences at
α = 0.05

90 % 95 % 99 %

RFok versus ANNa 3E−04 2E−06 1E−06

RFok versus kNNc 4E−10 2E−05 6E−06

RFok versus RFia 3E−14 6E−06 6E−06

RFok versus RFoa 0.755 0.156 0.043

RFoa versus ANNa 0.001 0.011 0.043

RFoa versus kNNc 1E−09 0.023 0.072

RFoa versus RFia 2E−13 0.013 0.072

ANNa versus RFia 3E−04 1.678 1.839

ANNa versus kNNc 0.018 1.678 1.839

RFia versus kNNc 0.346 1.678 1.839

Summarizing the main experiment, we see that all variants of the novel method pro-
duced empirically valid conformal predictors. Most importantly, the suggested approach,
i.e., using random forests as the underlying model and utilizing out-of-bag instances for the
calibration, clearly outperformed the existing alternatives with regard to efficiency. Finally,
when comparing the specific nonconformity functions, the novel, theoretically sound and
quite straightforward method to estimate the accuracy of the underlying model based on
out-of-bag errors for neighboring instances, actually turned out to be the most efficient.

In order to analyze and explain the results further, the left part of Table 8 shows the
accuracy (measured using Root Mean Square Error) for the different underlying models.
Looking at mean values and ranks, the most obvious result is that the kNN models are the
weakest. We also see that the random forests are generally the most accurate, and that there
is a small but systematic advantage in using all the data for the training. The fact that the
ANN has a better mean rank, but a worse average error, than RFi is explained by the fact that
the two random forest setups have very similar accuracy.

The right part of Table 8 shows the quality of the difficulty estimators. More specifically,
the numbers tabulated are the correlations between the estimated difficulty and the actual error
made by the underlying model on the test instances. It should be noted that these estimations
are calculated in quite different ways by the different setups. ANNa, RFia and RFoa all train
a separate model (a linear ANN) to predict the actual error for each instance, while RFok uses
the average out-of-bag error from the k nearest neighbors. kNNc, finally, does not explicitly
use or model the errors of the underlying model; instead an instance is deemed to be easier
if the k nearest neighbors are (relatively) close and agree in their predictions.

Comparing the different estimators, we see that the estimates produced by RFok have the
highest correlation with the model errors. The second best is actually kNNc, followed by the
approaches using a separate ANN model as estimator.

From this analysis, and the comparison between normalized and standard nonconformity
functions above, it is obvious that although the accuracy of the underlying model is very
important, the quality of the nonconformity function is vital for the efficiency. Specifically,
using normalized nonconformity functions will increase the efficiency and the quality of the
difficulty estimations has an apparent impact on the efficiency.

In order to determine the importance of parameter values, a limited post-hoc analysis
was performed, see Table 9. As described above, the parameters β, ρ and γ balance the
difficulty estimations against the error in the nonconformity functions. In previous studies,
all parameter values were set to 0.5, which is not a very robust choice since the importance
of the parameter value is heavily affected by the range of the target variable. In this study, as
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Table 8 Analysis of underlying models and estimators

Techniques Underlying model (RMSE) Estimator (correlation coefficient)

ANN kNN RFi RFo ANNa kNNc RFia RFoa RFok

abalone .077 .080 .076 .076 .354 .098 .314 .316 .351

anacalt .075 .149 .074 .071 .389 .477 .301 .288 .555

bank8fh .090 .102 .092 .091 .224 .261 .282 .276 .282

bank8fm .041 .066 .043 .041 .287 .518 .510 .488 .542

bank8nh .110 .115 .110 .110 .258 .274 .283 .277 .255

bank8nm .049 .063 .051 .050 .477 .576 .481 .467 .629

boston .082 .108 .079 .075 .231 .345 .301 .297 .403

comp .038 .045 .029 .029 .315 .262 .352 .344 .432

concreate .088 .116 .073 .068 .311 .221 .269 .284 .447

cooling .072 .081 .049 .049 .546 .638 .687 .698 .829

deltaA .040 .040 .037 .037 .247 .327 .261 .264 .416

deltaE .054 .054 .053 .053 .067 .126 .056 .059 .164

friedm .052 .070 .069 .068 .067 .192 .086 .086 .344

heating .058 .075 .025 .024 .607 .810 .415 .421 .669

istanbul .081 .081 .079 .079 .004 .224 −.059 −.088 .108

kin8fh .070 .075 .075 .074 .215 .193 .249 .246 .210

kin8fm .031 .042 .046 .044 .156 .246 .312 .309 .483

kin8nh .121 .119 .126 .125 .114 .195 .128 .129 .247

kin8nm .090 .088 .105 .101 .149 .199 .158 .157 .466

laser .038 .049 .036 .033 .334 .595 .394 .381 .567

mg .110 .099 .089 .083 .379 .677 .344 .342 .706

mortage .011 .018 .012 .011 .416 .455 .537 .529 .707

plastic .144 .156 .161 .160 −.008 −.181 .010 .024 −.210

puma8fh .141 .149 .143 .143 .150 .240 .150 .150 .268

puma8fm .063 .084 .063 .063 .107 .185 .100 .103 .269

puma8nh .137 .154 .133 .133 .143 .287 .174 .171 .237

puma8nm .067 .117 .059 .057 .083 .181 .208 .197 .220

quakes .173 .175 .174 .174 −.006 .004 .044 .040 .147

stock .038 .036 .033 .029 .143 .327 .154 .157 .458

treasury .014 .016 .013 .013 .319 .360 .426 .415 .667

wineRed .133 .133 .128 .127 .187 .099 .191 .199 .236

wineWhite .123 .120 .116 .116 .080 .095 .079 .087 .159

wizmir .024 .046 .022 .021 .214 .345 .144 .165 .181

Mean .077 .088 .075 .074 .229 .298 .253 .251 .377

Mean Rank 2.45 3.48 2.55 1.52 4.03 2.82 3.24 3.33 1.58

described in Sect. 4.1, the target variables were normalized to [0, 1], so both errors and error
estimates take on much smaller values. With this in mind, it was obvious that β too must
be smaller. In the experimentation, we set β = 0.01, based on some initial experimentation.
When looking at the efficiencies obtained using different values for β, we see that 0.01 is
actually the best choice, even if the difference when compared to β = 0 is marginal, on
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Table 10 Comparison to published results

Standard Normalized

RFi RFo kNN ANN RFia RFoa RFok kNNc ANNa

Confidence 90 %

abalone 6.63 6.58 6.71 6.60 5.76 5.59 5.61 5.84 5.65

boston 9.67 9.23 13.71 12.44 9.30 8.67 8.12 10.23 11.67

comp 9.26 9.02 10.15 9.75 8.08 7.99 7.91 8.52 8.78

bank 0.08 0.08 0.14 0.06 0.07 0.07 0.07 0.09 0.06

kin 0.51 0.50 0.41 0.50 0.50 0.48 0.40

puma 4.30 4.20 8.01 4.15 4.13 4.08 7.58

Confidence 95 %

abalone 8.95 9.02 9.49 9.08 7.54 7.20 7.30 7.96 7.41

boston 14.45 13.87 19.44 17.18 12.58 11.40 10.52 13.90 16.13

comp 12.00 11.75 13.59 12.34 10.40 10.07 9.94 11.11 10.97

bank 0.11 0.11 0.21 0.08 0.11 0.10 0.11 0.14 0.08

kin 0.61 0.61 0.51 0.60 0.60 0.57 0.49

puma 5.27 5.14 10.01 5.12 5.03 4.95 9.24

Confidence 99 %

abalone 15.00 15.23 16.63 14.97 12.27 12.07 12.28 14.03 12.47

boston 30.17 29.62 38.81 39.32 28.09 23.13 19.00 29.07 32.19

comp 21.44 19.98 22.71 19.86 16.23 15.72 15.60 17.47 17.28

bank 0.20 0.21 0.36 0.14 0.18 0.19 0.19 0.25 0.14

kin 0.84 0.83 0.71 0.84 0.82 0.75 0.67

puma 7.36 7.35 13.92 7.20 6.94 6.85 12.81

Interval sizes

most data sets. Larger values for β, on the other hand, clearly reduce the efficiency. So,
the conclusion is that although the parameter value β is very important and dependent on
the target range, all reasonable values produce conformal predictors with similar efficiency.
Looking at the kNNc setup, it should be noted that there are actually two different parameters,
making it possible to balance the two different parts of the difficulty estimation. In this study,
however, this was not evaluated, instead ρ and γ were both set to 1.0. From the post-hoc
analysis, we can see that while larger values (i.e., 1.25 or 1.5) would have increased the
efficiency slightly for the lower confidence levels, the resulting differences are almost never
large enough to change the ordering of the evaluated setups for specific data sets in the main
experiment. In addition, for the confidence level of 99 %, ρ = γ = 1.0 was actually the best
parameter setting.

In order to directly compare the efficiency of our methods to the published results in
Papadopoulos and Haralambous (2011) and Papadopoulos et al. (2011), Table 10 compares
the interval sizes obtained in Experiment 2 to the interval sizes published. Starting with the
standard nonconformity functions, we immediately see that RFi and RFo almost always pro-
duced smaller prediction intervals than kNN. For several data sets and confidence levels, the
differences are quite large. From a direct comparison, it is quite obvious that both RFo and
RFi were more efficient than kNN, winning five of six data sets on all confidence levels.
When compared to ANN, however, the results vary over the different confidence levels.
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For normalized nonconformity functions, we see that RFoa and, in particular, RFok are
the most efficient over all data sets and confidence levels. Counting wins and losses, RFoa
and RFok outperformed both kNNc and ANNa on a majority of data sets. To summarize
this comparison with published results, we see that the results from the main experiment
are confirmed, i.e., conformal regressors based on random forests, especially when utilizing
out-of-bag instances for the calibration, outperform the existing techniques, both when using
standard and normalized nonconformity functions.

5 Concluding remarks

In this paper, the use of random forests has been proposed as a strong candidate for regression
conformal prediction, since it allows for the necessary calibration to be performed on the out-
of-bag examples, thus making it possible to utilize all available data as a proper training set. In
one of the largest empirical evaluations to date on regression conformal prediction, the random
forest approach was compared to existing state-of-the-art approaches, based on ANN and
kNN, for both the standard and normalized settings, i.e., when generating prediction intervals
of uniform and varying sizes, respectively. The results show that the suggested approach, on
almost all confidence levels and using both standard and normalized nonconformity functions,
produced significantly more efficient conformal predictors than the existing alternatives. In
particular, the most efficient setup overall was found to be one suggested in this paper, i.e.,
a random forest conformal predictor calibrated using a normalized nonconformity function
based on out-of-bag errors of neighboring instances. The empirical evidence hence strongly
suggests that random forests in conjunction with out-of-bag calibration is a highly competitive
conformal regressor.

There are several possible directions for future research. One direction concerns the type of
model to use for estimating the difficulty of each instance in the normalized setting. Currently,
fairly simple models have been evaluated, i.e., kNN and linear ANNs, and gains are to be
expected from considering more elaborate techniques, as well as from performing further
parameter tuning. Another direction concerns investigating the application of other state-
of-the-art machine learning algorithms, e.g., SVMs, to the regression conformal prediction
framework and comparing the resulting conformal predictors to random forests with out-of-
bag calibration.
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