JMB Papers in Press. First Published online Aug 11, 2014
DOI: 10.4014/jmb.1407.07016

Manuscript Number: JMB14–07016

Title: Reverse micellar extraction of fungal glucoamylase produced in solid state fermentation culture

Article Type: Research article

Keywords: Glucoamylase, Solid–State Fermentation, Purification, Reverse Micelle, AOT, Protein
Reverse micellar extraction of fungal glucoamylase produced in solid state fermentation culture

Aliakbar Paraja*, Morteza Khanahmadib, Keikhosro Karimia, Mohammad J. Taherzadehc

aDepartment of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

bDepartment of Agricultural Engineering, Isfahan Center for the Research of Agricultural Science & Natural Resources, Isfahan, 81785-199, Iran

cSchool of Engineering, University of Borås, Borås, SE-501 90, Sweden

*Corresponding author:

Tel: +982182883689
Fax: +982182884931
E-mail: aliakbarparaj@gmail
ABSTRACT

Partial purification of glucoamylase from solid-state fermentation culture was, firstly, investigated by reverse micellar extraction (RME). To avoid back extraction problems, the glucoamylase was kept in original aqueous phase, while the other undesired proteins/enzymes were moved to reverse micellar organic phase. The individual and interaction effects of main factors, i.e. pH and NaCl concentration in aqueous phase, and concentration of AOT (sodium bis-2-ethyl-hexyl-sulphosuccinate) in organic phase were studied using response surface methodology. The optimum conditions for the maximum recovery of the enzyme were pH 2.75, 100 mM NaCl, and 200 mM AOT. Furthermore, the optimum organic to aqueous volume ratio \(\frac{V_{\text{org}}}{V_{\text{aq}}} \) and appropriate number of sequential extraction stages were 2 and 3, respectively. Finally, 60% of the undesired enzymes including proteases and xylanases were removed from aqueous phase, while 140% of glucoamylase activity was recovered in aqueous phase and the purification factor of glucoamylase was found to be 3.0-fold.

Keywords: Glucoamylase; Solid-State Fermentation; Purification; Reverse Micelle; AOT; Protein.
1. Introduction

Downstream separation and isolation processes are the most difficult and expensive steps in industrial enzyme productions, which stand for up to 70% of the production costs (Tanuja, et al., 2000). Since conventional downstream processing methods have their own limitations, i.e. tedious, expensive, and not easily scalable process and resulting in lower product yield due to multiple steps of handling, there has been an increasing interest to develop efficient and economical downstream processing methods for enzyme separation and purification (Hemavathi, et al., 2010, Krishna, et al., 2002, Tanuja, et al., 2000).

Reverse micellar extraction is a promising technique for the recovery and purification of biomolecules from an aqueous culture, which is a liquid-liquid extraction using water-in-oil microemulsion solution (Hayes and Marchio, 1998). RME for separation and purification of proteins is selective, efficient, energy-saving, and easily scalable process, which has a potential for continuous purification of enzymes (Krishna, et al., 2002, Mathew and Juang, 2007, Rodrigues, et al., 1999). However, the reverse micellar systems are very complicated processes, since several factors including the nature and concentration of the target enzyme, pH and ionic strength of the aqueous phase, type and concentration of the applied surfactant, processing time, and temperature affect the performance of the separation (Chen, et al., 2006). This performance has often been studied with model proteins such as cytochrome c, ribonuclease, myoglobin, and bovine serum albumin. However, not much work has been dedicated on actual system of fermentation broth using this method (Bera, et al., 2008), and to our knowledge, there are few studies on glucoamylase (GA) purification using RME.
In general, large monomeric and oligomeric proteins such as glucoamylase (48-112 kDa) are rather difficult to be extracted into reverse micelles, since they are likely to be excluded by steric interactions with reverse micelles or irreversibly denatured in the reverse micellar system due to electrostatic interactions (Hemavathi, et al., 2010). The activities and conformation of enzymes might be affected by various factors such as ionic strength, pH, and type of the solvents (Mathew and Juang, 2007). Separation of the target enzyme can also be achieved by retaining target enzyme in the aqueous phase, and transferring the impurities into the reverse micellar organic phase (Cortez, et al., 2004, Ferreira, et al., 2005). This strategy may be more advantageous, because of reducing the risk of enzyme denaturation or deactivation. In addition, this procedure eliminates backward extraction, and simplifies the extraction process (Su and Chiang, 2003). One of the most important benefits of this method is possibility of surfactant separation from the contaminant proteins by filtration and its recirculation without deactivation of the target enzyme (Mathew and Juang, 2007). Since solid-state cultures are high complex media, i.e. containing microbial cells, solid substrate particles, and other co-metabolites formed during fermentation, RME could be a convenient process for separation of the produced enzymes. However, there are quite few reports detected in the literature about the enzyme purification by transferring undesired protein from enzyme solution to reverse micellar organic phase (Nandini and Rastogi, 2010, Noh and Imm, 2005, Noh, et al., 2005).

Among the industrial enzymes, glucoamylase has a wide application in different industries and corresponds to 25-33% of the world enzyme market and ranks second after proteases (Nguyen, et al., 2002). The most important application of
glucoamylase includes production of high glucose syrup and dextrose for confectionary and pharmaceuticals (Bhatti, et al., 2007, Nguyen, et al., 2002).

Conventional methods which applied for GA extraction and purification are filtration and HPLC (Mahajan, et al., 1983), electrophoreses and affinity HPLC (Paszczynski, et al., 1982), precipitation and affinity HPLC (Ono, et al., 1988), leaching and HPLC (Yasuda, et al., 1989), pulsed column extractor (Ghildyal, et al., 1991), aqueous two phase systems (Ramadas, et al., 1995, Tanuja, et al., 1997), ultrafiltration and aqueous two phase systems (Tanjua, et al., 2000), affinity precipitation (Teotia, et al., 2001). However, as previously mentioned most of these conventional methods are tedious, expensive and not easily scalable.

The current study deals with purification of glucoamylase produced by solid state fermentation using RME method. Here, undesired proteins were removed into organic micellar phase, and the glucoamylase was kept in the initial aqueous phase. For this purpose, preliminary experiments were carried out to screen the factors which showed dominant effects on the extraction process. Response surface methodology using central composite rotatable design (CCRD) was then applied to study the effects of the main parameters on the enzyme purification. Furthermore, effects of volume ratio of two phases and the number of extraction stages were investigated. Removal of xylanase and protease, as the main undesired enzymes, from the glucoamylase solution was investigated at the optimum recovery conditions.
2. Materials and methods

2.1. Production of glucoamylase

Glucoamylase was produced by cultivation of *Aspergillus niger* CCUG 33991 (Culture Collection University of Gothenburg, Sweden) on wheat bran in a pilot-scale solid-state fermentation bioreactor (ICRASN, Iran). Sterilized wheat bran with 50% moisture (4 kg) was loaded to the forcedly aerated intermittently mixed packed-bed bioreactor and inoculated with *A. niger* spores, and then cultivated for 40 h at 35°C. Afterward, the moist fermented bran was dried at 40°C to obtain a moisture content of about 5%, and kept in a refrigerator at 4°C. The produced enzyme was purified from the dried fermented bran (DFB).

2.2. Leaching of glucoamylase

Predetermined amount of DFB was mixed with distilled water in order to obtain 50% moisture for DFB. The moist fermented bran was then mixed with 100 ml distilled water, on a shaker at 120 rpm and ambient temperature for 100 min. The insoluble residues were removed by filtration (Whatman filter paper, No. 2) and centrifugation (at 684 g for 10 min). The supernatant was used for the enzyme purification by reverse micellar extraction.

2.3. Reverse micellar extraction (RME)

The reverse micellar organic phase was prepared by dissolving a specific amount of anionic surfactant, AOT, in n-heptane as a solvent (to obtain 115.9, 150, 200, 250 and 284.1 mM AOT in organic solution). For preparing the aqueous phase, appropriate amount of NaCl was added to the enzyme solution (to obtain 15.9, 50, 100, 150 and 184.1 mM NaCl in aqueous solution) and the pH was adjusted using citrate buffer with HCl (1N) or NaOH (1N). Afterward, 4 ml aqueous phase and 3
ml organic phase were mixed for 20 min at ambient temperature. It was then centrifuged for 5 min at 1580 g to separate the phases. Subsequently, the organic phase was removed, and the protein content and enzyme activity of the aqueous phase were measured. The schematic of RME applied here for GA purification is shown in Fig.1

2.4. Enzymes assays

Glucoamylase activity was determined by the amount of glucose released by the action of enzyme on soluble starch. Samples (0.1 ml) were diluted with distilled water (1.0 ml) and added to 1.0 ml starch solution (1% in citrate buffer with pH 4.5-4.6) at 60°C for 15 min (Khanahmadi, 2004). The amount of the glucose released after 15 min was then measured using a glucose-oxidase kit (Shim-Enzyme, Iran). One unit of glucoamylase activity (GU) was defined as the enzyme quantity that can release 1.0 µmol glucose per min (Khanahmadi, 2004).

The protease assay was performed as described by Ikasari and Mitchell (Ikasari and Mitchell, 1996). The proteolytic reaction was performed at 40°C and pH 3 using casein (0.006 mg/ml) as substrate. One unit of protease activity (PU) was defined as 1.0 µmol/min of tyrosine equivalents released at the reaction conditions.

The xylanase activity assay was carried out using a colorimetric method (König, et al., 2002). A 0.015 mg/ml azo-xylan solution was prepared in 0.1 M sodium acetate buffer solution at pH 5.0. Xylanase solution and the enzyme control were 25-fold diluted using the same buffer. Azo-xylan solution (1.0 ml) was added to each tube containing 0.1 ml xylanase solution, vigorously stirred, and incubated for 20 min at 40°C. To suppress the reaction, 0.5 ml DNS (3,5-Dinitrosalicylic
Acid) solution was added to each tube and the tube was shaken for 10 s in boiling water. Thereafter, the tubes were centrifuged at 1580 g for 10 min and the absorbance of their supernatants was measured at 530 nm. One international unit (XU) is the amount of xylanase that can release 1.0 μmol/min xylose equivalents under the assay conditions (König, et al., 2002).

2.5. Protein assay

Protein concentration of the aqueous phase was measured by Lowry method, using bovine serum albumin as standard (Lowry, et al., 1951). The “specific activity” was calculated as the ratio of glucoamylase activity (GU/ml) to protein mass (mg/ml), whereas the “purification factor” was defined as the ratio of specific activities of glucoamylase in aqueous phase before and after the extraction (Hasmann, et al., 2007).

2.6. Experimental design

The experiments were conducted according to CCRD with three factors, each at five levels. The design was generated and analyzed using SAS package (Ver 3, SAS Institute Inc., NC, USA). NaCl concentration and pH of the aqueous phase, and AOT concentration of the organic phase were selected as the design factors, since they are reported to have dominant effects on RME performance (Andrews, et al., 1994, George and Stuckey, 2010). Values of the factors corresponding to their coded levels are given in Table 1. Due to our preliminary experiments, the effect of temperature was not significant; therefore, temperature was not considered as a parameter. Experimental design along with corresponding values of the responses is depicted in Table 2. The response function (Y) of the experimental design was the percentage of protein removed to the organic micellar phase. A second degree polynomial model, based on regression analysis,
was fitted to the experimental data of the response variable \(Y \) as a function of the design factors:

\[
Y = B_0 + \sum_i B_i X_i + \sum_i B_{ii} X_i^2 + \sum_i \sum_j B_{ij} X_i X_j
\]

(1)

where, \(X_i \)'s stand for design factors according to Table 1. The coefficients \(B_i \), \(B_{ii} \), and \(B_{ij} \) represent the linear and quadratic effects of \(i \)-th factor and the cross product effect between \(i \)-th and \(j \)-th factors, respectively (Dean and Voss, 1999). \(B_0 \) is the value of fitted response at the center point of the design, i.e. point \((0, 0, 0)\), which is known as an intercept point (Zivorad, 2004). Values of coefficients along with their significance and standard errors were determined by regression analysis using SAS package, which also estimated the optimum extraction conditions.

2.7 Effects of organic to aqueous phase volume ratio and multistage extraction on purification

After determination and verification of the optimum conditions obtained in experimental design, the optimum conditions were used for studying the effects of organic to aqueous phase volume ratio \((V_{\text{org}}/V_{\text{aq}}) \) and multistage extractions. The assessments of \(V_{\text{org}}/V_{\text{aq}} \) were studied at the optimum pH, AOT and NaCl concentrations. After phase separation, glucoamylase activity and protein content of the aqueous phase were measured.

For investigation of sequential extraction, predetermined volumes of aqueous phase and organic micellar phase were prepared at the optimum values of pH, NaCl, and AOT concentrations. Proportional volume ratios of these two phases were mixed together. After phase separation at the first stage, the aqueous phase supernatant was exposed to proper amount of fresh organic micellar phase in the
second stage. This method was applied for the subsequent stages. The removal of undesired enzymes (i.e. xylanase and protease) from the aqueous phase was also measured and reported.

3. Results

Glucoamylase was produced by cultivation of *A. niger* on wheat bran by solid state fermentation. The fermented wheat bran was mixed with distilled water, and the supernatant was separated from the insoluble residues by filtration and centrifugation. Glucoamylase was purified from the supernatant by reverse micellar extraction.

3.1. Effects of NaCl and AOT concentrations and pH on the protein extraction

Fig. 2 shows the contour plots and response surface curves for protein removal from aqueous phase into organic micellar phase at 200 mM AOT, 100 mM NaCl, and pH 3.0. Fig. 2a and 2b indicate that more than 62% of total protein could be removed into organic phase at pH 2.5. However, increasing pH from 2.5 to 3.8 reduced the protein removal to less than 20%. Furthermore, increasing NaCl concentration up to 80 mM showed a positive effect on protein removal, while higher concentration lowered protein removal from more than 60% to less than 40% (Fig. 2a & 2c). On the other hand, effect of AOT concentration was examined in range of 120 to 280 mM and the results showed 210 mM as an optimum (Fig. 2b & 2c).

The results of statistical analysis according to second order response model in the form of ANOVA (Analysis of Variance) are given in Table 3. The results indicated that pH and NaCl concentration have significant effects (p-value less
than 0.05) on proteins removal, whereas AOT concentration was not significantly affected the extraction (p>0.05). While significant quadratic effects of the variables observed, there were no significant interactions observed between the parameters.

3.2. Optimum conditions for protein extraction

The mathematical modeling representing protein removal from aqueous phase during reverse micellar extraction as a function of the most significant variables in coded values of the factors (X_i in Table 1) was given to be:

\[
Y(\%) = 56.789 - 3.528X_1 + 1.325X_2 - 12.318X_3 - 5.278X_1^2 - 5.631X_2^2 - 6.869X_3^2
\]

(2)

It corresponds to the non-coded factor values (x_i in Table 1) as:

\[
Y(\%) = -226.018 + 0.352x_1 + 0.927x_2 + 140.208x_3 - 0.002x_1^2 - 0.002x_2^2 - 27.474x_3^2
\]

(3)

Based on the second order regression model, numerical optimization was carried using response optimizer in SAS software. These numerical results showed the optimum pH of 2.5, while experiments show that glucoamylase is significantly deactivated at pH values less than 2.5. Thus, the following point was selected as an appropriate point for enzyme purification: 100 mM NaCl, 200 mM AOT, and pH 2.75. Actual extraction was performed at these conditions and a protein removal of 51% was obtained.

3.3. Effect of organic to aqueous phases volume ratio

In order to study the effects of organic to aqueous phases volume ratio (V_{org}/V_{aq}) on glucoamylase purification using RME, a series of experiments performed at optimum conditions obtained from the experimental design, i.e. 100 mM NaCl,
200 mM AOT, and pH 2.75. The results are depicted in Fig.3. Enhancement of organic to aqueous phase volume ratio had a minor effect on protein removal, while it shows significant improvements on glucoamylase activity. When the $V_{\text{org}}/V_{\text{aq}}$ was changed from 0.5 to 3, glucoamylase activity in aqueous phase was increased from 86% to 130% of its initial activity value.

The purification factor was calculated for different values of $V_{\text{org}}/V_{\text{aq}}$ from 0.5 to 3 (Fig.3). In volume ratios 0.5, 0.75, 1, 2, and 3 purification factors were 1.6, 1.8, 2.0, 2.3, and 2.6, respectively. The model predicted that purification factors higher than 2.0 was attainable using $V_{\text{org}}/V_{\text{aq}}$ above 2.0, whereas higher ratio of organic to aqueous phase volumes resulted in no significant increase in protein removal. For further experiments the optimum value chosen for $V_{\text{org}}/V_{\text{aq}}$ was 2.

3.4. Effect of sequential extraction

The effects of contact of aqueous phase supernatant containing glucoamylase with fresh reverse micellar phase from one to four stages were investigated and the results are presented in Fig.4. In each stage, the volume of the organic phase was twice of the aqueous phase volume. The other conditions of these experiments were: 100 mM NaCl, 200 mM AOT, and pH 2.75.

The results showed that more extraction stages resulted in higher glucoamylase activity. The activity of the enzyme increased from 107% to 138% (about 30% increment) from stage 1 to 4. However, the protein removal was not significantly affected by increasing the number of extraction stages. Calculation of glucoamylase purification factor reveals that during the sequential extractions, glucoamylase can be purified more than 3-fold from its initial concentration in the aqueous phase, after 3-stage extraction by fresh organic micellar phase.
3.5. Effect of reverse micellar extraction on xylanase and protease activity reduction

In purification processes, it is generally desirable to decrease the amounts of undesired enzymes in the objective enzyme solutions. Thus, the amounts of other enzymes, i.e. xylanases and proteases that should be removed from the aqueous phase were studied. Thereby, the activity of the enzymes were determined at the optimum conditions (100 mM NaCl, 200 mM AOT, pH 2.75, V_{org}/V_{aq} as 2), during 3-stages and the average results are presented in Fig.5.

Three-stage extractions increased the glucoamylase activity by a factor of 130%. Furthermore, the activity of xylanase and protease in aqueous phase before and after each stage, demonstrate that more than 60% of these enzymes could be removed by the RME. Moreover, most of these enzymes were removed during the first stage and further stages had no significant effects on the enzymes removal (Fig.5).

4. Discussion

Glucoamylase, one of the most important industrial enzymes, can be successfully purified by reverse micellar extraction from solid-state fermentation by keeping the enzymes in the original aqueous phase and removing the other undesired protein to reverse micellar organic phase. NaCl and AOT concentrations and pH are the effective parameters on removal of contaminant proteins from aqueous phase in partial purification of glucoamylase by reverse micellar extraction.

In the current work, pH and NaCl concentration were shown to be the most important factors on purification of glucoamylase from a solid state fermentation culture, while the AOT concentration did not significantly affect the purification.
The effect of pH was related to the concentration of positive charges on the protein surface (Andrews, et al., 1994, Krishna, et al., 2002). Furthermore, increasing the ionic strength reduces electrostatic repulsion between the charged head groups of the surfactants in a reverse micelle, thereby constricts reverse micelle, which in turn prevents large proteins from extraction (Chen, et al., 2006, Hasmann, et al., 2007). The main driving force of contaminant protein removal from aqueous phase into organic micellar phase is electrostatic interaction between reverse micelles and proteins. However, larger proteins are difficult to be extracted into reverse micelles and for efficient transfer, a pH much lower than its isoelectric point is required for anionic surfactants i.e. AOT. Since glucoamylase isoelectric pH is about 3.6, and it is a large protein (48-112 kDa), high acidic pH is necessary for extraction of this enzyme into AOT-reverse micelles. However, its denaturation at this harsh condition should be considered.

Volume ratio of organic to aqueous phase is a critical parameter in extraction of enzymes (Krishna, et al., 2002, Liu, et al., 2006). Increasing $V_{\text{org}}/V_{\text{aq}}$ is expected to enhance protein extraction due to increasing the number of the reverse micelles that can encapsulate the extractable proteins. On the other hand, when more water is absorbed into the micelles cores, the aqueous phase will be concentrated and result in higher activity of the enzymes. The current study observations indicated that increasing $V_{\text{org}}/V_{\text{aq}}$ led to more decreasing of aqueous phase volume after phase separation. This could be the reason for increasing the glucoamylase activity by increasing the organic to aqueous phase volume ratio, while no more protein extraction occurred. Water removal into organic phase in subsequent stages might be the reason for improving the glucoamylase activity. Moreover, it is reported that some of the compounds present in wheat bran act as inhibitors for
glucoamylase (Kashimura, 2007) and selective extraction of these components may be another reason of glucoamylase activity enhancement.

Isoelectric point and molecular weight for xylanases produced by *A. niger* are 9 and 13.5-14 kDa, respectively (Beg, *et al.*, 2001). Therefore, in the experimental conditions (pH 2.75), these enzymes charges are highly positive and the great electrostatic attraction transfers the xylanases into reverse micelles. Furthermore, proteases molecular weight is lower than 50 kDa and its isoelectric point close to 4.0 (Kalisz, 1988). Therefore, the reason for more than 60% proteases removal from the aqueous phase in this work is due to the electrostatic interactions. The plateau behavior of xylanase and proteases may be attributed to the various kinds of these enzymes in the aqueous phase as well as the electrostatic effects (Krishna, *et al.*, 2002, Pires, *et al.*, 1996). According to the present study observations, it is highly probable that variation of pH and ionic strength of aqueous phase during sequential extraction, led to decreasing protein and enzyme positive charges which resulted in reduction of electrostatic attraction between protein/enzyme and negative head groups of AOT.

5. Conclusion

Glucoamylase produced by solid-state fermentation was successfully purified using RME method. The optimum values for pH, NaCl and AOT concentrations as main effective parameters of purification were 2.75, 100, and 200 mM, respectively. Using organic to aqueous phase volume ratio of two and three stages of extraction at optimum conditions, resulted in extraction of more than 50% of contaminating proteins, while 140% of glucoamylase activity was recovered and the enzyme purified up to 3.0-fold. The proposed extraction procedure has several
advantages in terms of time and cost and avoiding activity loss of the target enzyme compared to traditional RME.

5. Acknowledgements

This work was financed by Isfahan Center for the Research of Agricultural Science & Natural Resources and supported by Industrial Biotechnology Group at the Department of Chemical Engineering, Isfahan University of Technology.
1 Nomenclature

Abbreviations

ANOVA Analysis of variance
AOT Aerosol-OT or Sodium bis-2-ethylhexylsulphosuccinate
A. niger Aspergillus niger
BSA Bovine Serum Albumin
CCRD Central Composite Rotatable Design
DFB Dried Fermented Bran
DNS 3,5-Dinitrosalicylic Acid
GA Glucoamylase
RM Reverse Micelle
RME Reverse Micellar Extraction
SAS Statistical Analysis of System

Units

GU One unit of glucoamylase activity
kDa Kilo Dalton
PU One unit of protease activity
XU One unit of xylanase activity

Letters

B₀ Constant value in regression model
Bᵢ Linear coefficient of Xᵢ in regression model
Bᵢᵢ Quadratic coefficient of Xᵢ² in regression model
Bᵢⱼ Cross product coefficient of Xᵢ and Xⱼ in regression model
V_aq Volume of aqueous phase
V_org Volume of organic phase
xᵢ un-coded or real value of the main parameter 'i'
(i=1 for NaCl, i=2 for AOT, and i=3 for pH)
Xᵢ Coded value of the main parameter 'i'
Y Response function of the regression model
References

Kashimura, J. 2007. Sucrase activity inhibitor, glucoamylase activity inhibitor and food and feed containing the same.

Khanahmadi, M. 2004. Simulation and analysis of fluidized bed bioreactor for solid state fermentation. Sharif University of Technology, Iran.

Table 1

Levels of different process variables in coded (X_i) and un-coded (x_i) forms in experimental design for reverse micellar extraction of glucoamylase by CCRD method.

<table>
<thead>
<tr>
<th>Coded levels</th>
<th>Uncoded values of process variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_i</td>
<td>x_1</td>
</tr>
<tr>
<td>-1.682</td>
<td>15.9</td>
</tr>
<tr>
<td>-1.000</td>
<td>50</td>
</tr>
<tr>
<td>0.000</td>
<td>100</td>
</tr>
<tr>
<td>+1.000</td>
<td>150</td>
</tr>
<tr>
<td>1.682</td>
<td>184.1</td>
</tr>
</tbody>
</table>
Table 2

Experimental designs in coded \((X_i)\) form of process variables and values of experimental data of protein removal, enzyme recovery and purification factor for optimization of reverse micellar extraction of glucoamylase using CCRD method.

<table>
<thead>
<tr>
<th>Trial kind</th>
<th>Trial No.</th>
<th>Coded Variables</th>
<th>Removal of Protein (%)</th>
<th>Recovery of GA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NaCl ((X_1))</td>
<td>AOT ((X_2))</td>
<td>pH ((X_3))</td>
</tr>
<tr>
<td>Core points</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.682</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.682</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Star like points</td>
<td>11</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>1.682</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>-1.682</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1.682</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Center points</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3
Analysis of variance (ANOVA) for quadratic model of protein removal using reverse micellar extraction process.

<table>
<thead>
<tr>
<th>Source</th>
<th>Degree of Freedom</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1</td>
<td>170.0</td>
<td>170.0</td>
<td>19.7</td>
<td>0.001</td>
</tr>
<tr>
<td>AOT</td>
<td>1</td>
<td>24.0</td>
<td>24.0</td>
<td>2.8</td>
<td>0.126</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>2072.2</td>
<td>2072.2</td>
<td>240.6</td>
<td>0.000</td>
</tr>
<tr>
<td>NaCl*NaCl</td>
<td>1</td>
<td>367.6</td>
<td>367.6</td>
<td>42.7</td>
<td>0.000</td>
</tr>
<tr>
<td>NaCl*AOT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>NaCl*pH</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.06</td>
<td>0.815</td>
</tr>
<tr>
<td>AOT*AOT</td>
<td>1</td>
<td>420.8</td>
<td>420.8</td>
<td>48.9</td>
<td>0.000</td>
</tr>
<tr>
<td>AOT*pH</td>
<td>1</td>
<td>4.5</td>
<td>4.5</td>
<td>0.5</td>
<td>0.486</td>
</tr>
<tr>
<td>pH*pH</td>
<td>1</td>
<td>635.6</td>
<td>635.6</td>
<td>73.8</td>
<td>0.000</td>
</tr>
<tr>
<td>Model (Linear)</td>
<td>3</td>
<td>2266.2</td>
<td>755.4</td>
<td>87.7</td>
<td>0.000</td>
</tr>
<tr>
<td>Model (Quadratic)</td>
<td>3</td>
<td>1193.7</td>
<td>397.9</td>
<td>46.2</td>
<td>0.000</td>
</tr>
<tr>
<td>Model (Cross Product)</td>
<td>3</td>
<td>5.0</td>
<td>1.7</td>
<td>0.2</td>
<td>0.898</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>86.1</td>
<td>8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lack of fit)</td>
<td>5</td>
<td>66.1</td>
<td>13.2</td>
<td>3.3</td>
<td>0.108</td>
</tr>
<tr>
<td>(Pure Error)</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>3550.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
<td>97.6%</td>
<td></td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td></td>
<td></td>
<td></td>
<td>95.4%</td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Fig.1. A schematic of reverse micellar extraction method applied in the present work for glucoamylase purification: ○: Glucoamylase; ●: Protein.

Fig.2. Contour plots and response surface curves of protein removal vs. pH, [NaCl], and [AOT]. (a) Protein removal vs. pH and [NaCl] at [AOT] = 200 mM. (b) Protein removal vs. pH and [AOT] at [NaCl] = 100 mM. (c) Protein removal vs. [AOT] and [NaCl] at pH = 3. Initial GA activity and protein concentration were 10.9 GU/ml and 2.72 mg/ml, respectively.

Fig.3. Effect of organic to aqueous phase volume ratio on the protein removal and enzyme recovery. The symbols represent glucoamylase (GA) activity (■) and protein removal (♦) at 100 mM NaCl, 200 mM AOT, and pH 2.75. Initial GA activity and protein concentration were 11.6 GU/ml and 2.97 mg/ml, respectively.

Fig.4. Effect of sequential extraction on the protein removal and enzyme recovery. The symbols represent glucoamylase (GA) activity (■) and protein removal (♦) at 100 mM NaCl, 200 mM AOT, pH 2.75, and V_{org}/V_{aq}= 2. Initial GA activity and protein concentration were 11.3 GU/ml and 2.70 mg/ml, respectively.

Fig.5. Removal of xylanase and protease during glucoamylase purification using reverse micellar process. The symbols represent glucoamylase (GA) activity (■), protein removal(♦), xylanase removal(●), and protease removal (▲) at 100 mM of [NaCl], 200 mM of [AOT], pH 2.75, V_{org}/V_{aq}= 2. Initial GA activity, xylanase activity, protease activity, and protein concentration were 12.9 GU/ml, 120.88 XU/ml, 42.87 PU/ml, and 2.21 mg/ml, respectively.
Fig. 1

Organic Micellar Phase
(AOT in n-Heptane)

- : Empty RM
- : Filled RM

Aqueous Phase

Before RME

After RME
Fig. 2
Fig. 3

![Graph showing protein removal and GA activity against volume ratio (Vorg/Vaq).](image)
Fig. 4
Fig. 5