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Abstract Digital preservation is the persistent archiv-

ing of digital assets for future access and reuse, irrespec-

tive of the underlying platform and software solutions.

Existing preservation systems have a strong focus on

grids, but the advent of cloud technologies offers an at-

tractive option. We describe a middleware system that

enables a flexible choice between a grid and a cloud

for ad-hoc computations that arise during the execu-

tion of a preservation workflow and also for archiving

digital objects. The choice between different infrastruc-

tures remains open during the lifecycle of the archive,

ensuring a smooth switch between different solutions to

accommodate the changing requirements of the organi-

zation that needs its digital assets preserved. We also

offer insights on the costs, running times, and organi-

zational issues of cloud computing, proving that the
cloud alternative is particularly attractive for smaller

organizations without access to a grid or with limited

IT infrastructure.

Keywords Digital Preservation · Grid · Cloud

1 Introduction

Preservation of digital assets requires more constant

and ongoing attention than preservation of other me-

dia, because such collections are volatile and can be

catastrophically lost much more easily and quickly than
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physical assets due to technical and human failures [39].

Digital preservation (DP) combines policies, strategies

and actions to ensure that digital objects remain au-

thentic and accessible to users and systems over a long

period of time, regardless the challenges of component

and management failures, natural disasters or attacks

[5]. This includes the preservation of materials resulting

from digital reformatting, but particularly of informa-

tion that is born-digital and has no analogue counter-

part.

Distributed DP methodologies state that any re-

sponsible preservation system must distribute copies of

digital assets to geographically dispersed locations. A

single organization with preservation needs is unlikely

to have the capability to operate geographically dis-

persed and securely maintained servers. Hence collab-

oration between institutions is essential, and this col-

laboration requires both organizational and technical

investments [39]. Long-term inter-institutional agree-

ments must be put in place, and these typically trans-

late to distributed grids shared by the participating in-

stitutions. As a consequence, much of the research on

technologies that support DP focuses on grids.

DP, however, is not just about the secure backup of

the bitstream of digital assets, it is also about future

access and reuse. While DP has a vast literature expos-

ing the wide array of associated issues, here we would

like to focus on three aspects only: migration and trans-

formation, scalability, and reusability. The first aspect

refers to the problem of keeping the content of legacy

file formats accessible. This problem is most prominent

with proprietary file formats for which documentation

is not available. Once the vendor stops support for the

associated software products, these files face digital ob-

solescence. A common solution to the problem is mi-

gration in which older formats are transformed to a
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more persistent format. Secondly, dynamic collections

and environments for DP require technical scalability

to face technology evolution. Existing static collections,

for instance, a digitised historical archive, where no new

items will be added, will have a fixed data size. Al-

though it will not be a must to add new components

to increase the storage capacity, it may be necessary

to replace components or transform the objects in the

collection. These requirements ask for scalability [4].

Achieving this with DP may require specific invest-

ments in an infrastructure for storing, maintaining, and

managing data. Such costs can be prohibitive for orga-

nizations whose core business is not data conservation

and that do not have a considerable budget for invest-

ments in information technology. The third important

aspect of DP that we would like focus on is to enable

the reuse of digital content. Reuse of digital content

covers its subsequent verification and exploitation with

a novel purpose, potentially by new consumers. Since

consumers are unable to refer back to the creators, reuse

of preserved digital objects depends on proper descrip-

tions provided through the archive [15]. In this sense,

reuse of digital content asks for metadata on both the

content and how it was transformed to its most re-

cent form. This is where document process preserva-

tion helps, which provides an architecture-independent

description of the intent behind a document process

[24]. These three aspects of DP are not unrelated. The

processing pipeline is computationally expensive, and

to our knowledge this issue has not been addressed di-

rectly in the DP literature.

A fundamental and often overlooked problem is that

organizations outside institutional or inter-institutional

grids also require the preservation of their digital assets.

The infrastructure offered by cloud providers can be a

solution for them both for distributed preservation and

for ad-hoc computations. Larger organizations may also

study the cloud alternative to reduce cost or outsource

archival-related activities.

In this paper, we build on existing solutions to de-

rive a middleware approach that enables a smooth switch

between a grid and a cloud infrastructure addressing

both computational and storage needs. Both ad-hoc

computations and archival can be performed either in a

grid or a cloud. As the collection expands or the archiv-

ing organization changes, our solution offers a smooth

transition between the grid and the cloud if the need

arises. Relying on experiments in the cloud, and taking

a few organizational issues in consideration, we con-

clude that the cloud alternative is particularly attrac-

tive to smaller institutions. The suitability of cloud stor-

age as a means to achieve geographically distributed

fault tolerant backup is well known, and therefore our

focus is on the computational aspect.

This paper is organized as follows. Section 2 briefly

overviews some concepts of digital preservation as these

will be crucial for the rest of the paper. Section 3 touches

upon related work with particular focus on existing

and proven solutions for grid-based digital preserva-

tion. Taking these solutions as the starting point, our

proposed flexible middleware for digital preservation in

grids and clouds is described in detail in section 4. Sec-

tion 5 further discusses the implementation and reveals

some experimental results. After the main discussion,

we highlight some non-technological issues that may in-

fluence the decision of whether an organization should

choose a grid or cloud solution for preservation purposes

(Section 6). Finally, Section 7 concludes the paper.

2 Requirements in digital preservation: the

Open Archival Information System and beyond

The most popular standard in the area of DP is ISO

14721:2003 Space data and information transfer sys-

tems – Open archival information system – Reference

model, widely known as OAIS [23]. It is a functional

framework which presents the main components and

basic data flows within a DP system. OAIS is intended

to identify the necessary features of an archival infor-

mation system rather than recommend any particular

type of implementation. It also draws attention to the

important role of preservation for repositories, asking

that it should be considered alongside other functions

and activities [1]. Institutional repositories are a partic-

ular form of digital archives that are implemented for
use within an institutional setting. Institutional repos-

itories often pay less attention to preservation [25]. To

share essential functions and requirements of preserva-

tion between two or more institutions, OAIS establishes

a common framework of terms and concepts, and com-

prises several models which prescribe a minimal set of

responsibilities required for the preservation of digital

objects [3]:

– The Information Model identifies three types of in-

formation packages, namely Archival Information

Package, Submission Information Package, and Dis-

semination Information Package which address the

encapsulation of information objects within OAIS.

Information packages include content information

composed from the data object and Representation

Information and Preservation Description Informa-

tion and additional packaging information.

– The Functional Model distinguishes between seven

separate functional entities and their related inter-
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faces. The main functions of an OAIS are modelled

as seven functional entities.

– The Environment Model defines the generic roles

interacting with the OAIS system, identifying three

roles: Producers, Consumers and Management.
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Fig. 1 OAIS functional model

The functional model is illustrated in Figure 1.

The view of OAIS is exclusively archival-centric, and

therefore it is quite limited in scope when it comes to

the complete lifecycle of a digital object. The Euro-

pean Commission cofunded the integrated project Sus-

taining Heritage Access through Multivalent Archiv-

iNg (SHAMAN) with the aim to investigate the long-

term preservation of large volumes of digital objects

in a distributed environment, by developing a preser-

vation framework that is verifiable, open and extensi-

ble [22]. To understand the broader context of digital

objects that need to be preserved, SHAMAN defines
features not present in the OAIS [38], such as layered

information packages where each layer is addressed by a

particular preservation activity, activities that precede

the ingest phase, activities that succeed the access (i.e.,

post-access) phase, and further refinement of the infor-

mation package to ensure the information necessary to

guarantee long-term preservation is included. The lat-

ter is particularly important because of the additional

information required by the description of pre-ingest

workflows and to facilitate post-access (see also Section

3.2).

The applied software architecture is driven by the

requirements from OAIS and the additional points de-

fined by SHAMAN and reflects the requirements to-

wards a Service-oriented Architecture (SoA). This ar-

chitecture consists of three layers (see Figure 2). The

first one is the presentation layer [32]. Presentation ser-

vices are provided through a web interface with Multi-

valent Media Engines for rendering the different data

types. Multivalent is an extensible digital document

Presentation Services

Business Services

Archival Storage Interface

SOA
Middleware

Policy
Enforcement

Support
Services

Le
g

a
cy

 C
o
n

n
e
cto

rs

Lo
g

g
in

g
 S

e
rv

ice
s

Fig. 2 Overview of the SHAMAN core infrastructure

framework to support any format, which will provide

future access to data formats [33]. The middle layer

is the Business layer which serves as a mediator be-

tween the presentation layer and the infrastructure. It

holds the services and SoA components like the service

orchestration and service registry. It also contains the

policies that describe the agreement between the Pro-

ducer and Archive Management on how the data are to

be stored in the long-term archive such that they can be

usable in the future by a defined group of Consumers.

The lowest layer is the infrastructure layer at which the

components of storage infrastructure shall be specified.

Communication interfaces mediate the information flow

between those different layers. Figure 2 illustrates the

main components of the SHAMAN core infrastructure

(see also the next section for implementation technolo-

gies of the framework and Section 4 for the proposed

middleware that supports the Business Services layer).

3 Related technologies in digital preservation

3.1 Archiving to a grid

Data grids provide several functions required by DP

systems, particularly when massive amounts of data

must be preserved [5], offering a distributed infrastruc-

ture and services that support applications dealing with

massive data collections stored in heterogeneous dis-

tributed resources. Focusing on the technical aspects

first, grids are built using middleware making funda-

mental aspects such as file management, user manage-

ment and networking protocols completely transparent.

Other threats in a grid environment include organiza-

tional issues, such as management failures. These can

be considered at a higher organizational level through

preservation policies that include duplication of resources

and integrity checks among others.

The Integrated Rule-Oriented Data System (iRODS,

[34]) is a state-of-the-art open source distributed soft-

ware system for addressing key data management tasks
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taking a comprehensive approach to full data life cycle

management. It is a middleware that manages a highly

controlled collection of distributed digital objects, while

enforcing user-defined management policies across the

multiple storage locations. The SHAMAN framework

uses iRODS as an implementation technology.

At the iRODS core, a rule engine interprets the rules

to decide how the system is to respond to various re-

quests and conditions. This ability to execute rules con-

ditionally, and to define multiple rules implementing al-

ternative means of achieving the same goal, provides a

degree of flexibility that hold great promise for imple-

menting automated digital curation and preservation

applications [21,20].

The iRODS server software is installed on each stor-

age system where data will be stored. The remote loca-

tion of the storage system is normally defined by an IP

network addresss. The iRODS server translates opera-

tions into the protocol required by the remote storage

system. In addition, a rule engine is also installed at

each storage location. The rule engine controls oper-

ations performed at that site. The iRODS data grid

effectively implements a simple distributed operating

system.

The iRODS solution controls low-complexity work-

flows that can be most efficiently executed at each stor-

age system. Examples of low-complexity workflows in-

clude the extraction of a data subset from a large file,

or the parsing of metadata from a file header. The

iRODS system interacts with remote computers to exe-

cute high-compexity tasks. This capability is currently

enabled through support for encapsulation of remote

web services as iRODS micro-services. Within the iRODS

workflow, calls can be issued to remote processing sys-

tems which manipulate data that can be moved across

the network.

3.2 Preservation workflows

Preserving the intent behind the activities and projects

that led to the production of digital data can be as

meaningful and important in the long term as preserv-

ing the data. Indeed, an important goal of DP is to

enable reuse of digital content by securing the long

term understanding of the intent behind its preserva-

tion. This is an integral part of the extensions of OAIS

provided by SHAMAN.

Production and reuse of digital content from the

archive do not coincide, as reuse may have a novel

purpose or may operate in a totally different environ-

ment than was available at production time. Preserva-

tion must bridge gaps in time, space, semantics, knowl-

edge, objectives and other dimensions. This is why the

description of preserved digital objects must include

means to understand the context in which the data was

initially produced and used. This context is not only de-

fined by the digital objects themselves, but also by the

processes in which they were created, ingested, accessed

and re-used.

The Xeproc1 domain-specific language, developed

within SHAMAN, addresses precisely the need to cap-

ture the intent behind document processes, so that they

can be preserved and reused in future unknown infras-

tructures [24]. To that end, Xeproc preserves not only

production processes, but also instrumented specifica-

tions of a document processing project. The SHAMAN

framework uses Xeproc as an implementation technol-

ogy.

Xeproc technology can be used to build a wide range

of applications based on document processing, includ-

ing transformation, extraction, indexing and naviga-

tion. It can be easily integrated with more global busi-

ness processes and customized to match specific require-

ments and infrastructures. In the spirit of SoA, Xeproc

embeds references to services and documents and pro-

vides loose coupling not only to services but also to

data resources, with respect to both their location and

format.

These capture the intent behind the workflow irre-

spective of the implementation at a given point in time

(see Figure 3). Such abstract representations are pre-

served, so that the Xeproc models, utilizing XML, can

be seen as independent specifications to be instantiated

and deployed over time and as technology evolves.

XML is ideally suited to represent the logical struc-

ture of documents (e.g. titles, sections, chapters, para-

graphs, reading flow) independently of their visual ren-

dering. By explicitly encoding a document’s structure

and meaning, XML opens up the possibilities for docu-

ment lifecycle management, including content reuse and

repurposing, quality assurance and security. The sheer

volume and heterogeneity of document collections (nu-

merous authoring systems and proprietary formats such

as PDF, PS, Word, and TIFF), as well as the nature and

characteristics of the information to be encoded (data-

oriented documents such as purchase orders, complex

and implicit structures such as maintenance manuals),

makes document conversion to XML a complex and del-

icate task.

XML processing often involves transformations from

one XML format to another. Extensible Stylesheet Lan-

guage Transformations (XSLT) is a declarative, XML-

based language used for describing these transforma-

tions [42]. For instance, XSLT is often used to convert

1 Available on Eclipse 3.5.1 under the Eclipse Public Li-
cense at http://marketplace.eclipse.org/content/xeproc
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Fig. 3 Document process designer showing a process to extract table of contents

XML data into HTML or XHTML documents for dis-

play as a web page. In the context of DP, content may

be stored in a richly annotated XML format, and when

it is presented to the user, an XSLT transformation can

be used to render the page in a legible format.

Within the context of SHAMAN, Xeproc has been

specifically used to model XML processing pipelines

and XML validation checkpoints. Validation checkpoints

may be defined in any of several schema languages such

as Document Type Definition or Relax NG. Those XML

processing pipelines focus on identifying structural meta-

data describing the document organization. The pipe-

lines eventually produce metadata in Metadata Encod-

ing and Transmission Standard (METS, [10]) address-

ing various aspects of the document collections, such

as extraction of logical organization, extraction of the

page numbering (for book navigation), and extraction

of illustrations and associated captions. Eventually, the

packaged pipelines can be deployed towards a produc-

tion platform.

3.3 Retrieval

Designing and developing digital library access services

focus on approaches to indexing and searching in an

increasing range of genres and materials. An important

aspect of this research is concerned with providing ef-

fective and scalable information retrieval services for

digital libraries and archives as these diverse collections

continue to grow.

The Cheshire project has a research focus on large-

scale digital collections with a focus on supporting dis-

tributed digital libraries in a grid environment [26]. At

the same time the project has been prototyping sys-

tems for very long term digital preservation, and exam-

ining how grid-scale information retrieval systems can

interoperate with petabytes of diverse data stored over

many years. The Cheshire system implements a set of

objects with precisely defined roles that permit digital

collection operations to be distributed over many nodes

on a network, vastly increasing the throughput of data

for compute and storage intensive processes with little

overhead beyond single processor solutions. Once the

distributed infrastructure has been defined, one or more

‘master’ workflows divide the processing requirements

among a number of ‘slave’ processes. The implementa-

tion uses the Parallel Virtual Machine as a very fast

communication layer over a gigabit switched network.

The Parallel Virtual Machine is a software tool for par-

allel networking of computers, allowing a network of

machines to be used as a single distributed parallel pro-

cessor [40]. When a slave process completed its work-

flow, it returns the results to the master to be merged.

Object interactions within the architecture just like re-

sults from any workflow are well-defined, based on the

last processing object. This is particularly important

for trees or graphs of distributed workflows. If the in-

dex files at each node store all of the terms for the

records at the node, then interacting with the subset

of the database is very fast, but the intermediate result

sets will need to be merged before a global query can be

answered. If each node maintains a portion of the terms

for all of the records, then it can answer the query au-

thoritatively, requiring central authority to manage the

division of the index terms.

As part of the ongoing efforts in SHAMAN, Xe-

proc pipelines and components were packaged into stan-

dalone Python programs that can be deployed on any

node of a grid. In the project, iRODS was used for stor-

age with Cheshire used for full-text indexing. Cheshire

proved to be a fast engine for digital libraries in a dis-

tributed grid environment [26,27], and integrates well

with iRODS [44].

3.4 Additional support services

As part of the support services in the SHAMAN core

infrastructure, several natural language processing and

data mining techniques were considered to produce use-

ful tools for accessing and reusing preserved digital as-

sets.

Data mining processes typically include supervised

learning such as classification (predicting if a given doc-

ument is a member of a particular class), and unsu-
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pervised learning such as clustering (grouping together

similar documents), plus association rule mining (dis-

covering rules that interrelate documents or terms within

those documents). Especially if considering their ex-

treme usefulness, with a few notable exceptions [19,11],

taking advantage of these general techniques within dig-

ital library services does not appear to be widespread.

The situation is similar in text mining processes within

digital libraries, with very few examples of fully inte-

grated services and workflows [48].

The computational expense to execute data or text

mining based analysis has been identified as the major

cause for the lack of more widespread use of such min-

ing processes [37]. Only a very few natural language

processing systems are available for general use, be-

ing sufficiently fast in serial mode to cope with even

medium scale digital libraries without distributed com-

puting. Further, the most advantageous method of in-

tegration into document processing workflows is often

not obvious. To overcome this obstacle, [37] proposed

that while the data grid integration is very important

for dramatically increasing the scalability of digital li-

brary and preservation systems, the actual utility stems

from the added integration of computationally expen-

sive processing, extending the information available for

discovery, analysis, and potential reuse.

The initial exploration of a distributed grid-based

data and text mining system in a digital library context

[37] considered support vector machines, näıve Bayes

networks, and association rule mining, coupled with

part-of-speech tagging and stemming. These processes

were integrated with iRODS and Cheshire, requiring

extensive changes of the latter. The feasibility of such

integration is convincing, but appears cumbersome.

4 A flexible middleware for digital preservation

in grids and clouds

This section describes our proposed middleware for dig-

ital preservation that is agnostic to whether the envi-

ronment is a grid or a cloud. The middleware is in the

Business Services layer of the SHAMAN core infras-

tructure, underlying most of the components that be-

long here. The middleware hides the complexity of the

switch between a grid or a cloud, irrespective of whether

the need for change arises from storage requirements or

computational demand, enabling a smooth transition

between the different types of infrastructures.

While it is the source of incessant debates of what

a cloud actually is, first we outline a few working def-

initions that help limit the scope for the rest of the

discussion (Subsection 4.1). Then we describe the var-

ious components of the proposed middleware, which is

also illustrated in Figure 4. The first component is an

archival framework that acts according to a predefined

set of policies (Subsection 4.2). The remaining two sec-

tions address dynamic scalability of computations in

grids and clouds for preservation workflows and addi-

tional support services (Subsections 4.3 and 4.4).
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Fig. 4 Overview of the proposed framework

4.1 Grids, institutional and public clouds

By grid, we mean a software infrastructure that links

distributed computational resources such as people, com-

puters, sensors and data [16]. A data grid links dis-

tributed storage resources, from archival systems, to

caches and databases, mapping data to a uniform log-

ical name space to create global, persistent collections.

Grids tend to be more loosely coupled, heterogeneous,

and geographically dispersed than traditional clusters,

in which the individual units are very similar and they

are connected through a fast local area network.

The definition of a “cloud” is controversial. By a

cloud, we simply mean a dynamically provisioned in-

frastructure or service [2]. Under this model, a user

can dynamically provision any amount of computing

resources from a (cloud) provider on demand and only

pay for what is consumed [28]. Technically, this means

that the user is paying for access to virtual machine in-

stances that run a standard operating system. The vir-

tualization technology enables the cloud provider to al-

locate available physical resources and enforce isolation

between multiple users who may be sharing the same

hardware. Once one or more virtual machine instances

have been allocated, the user has full control over the

resources and can use them for arbitrary computation.

When the virtual instances are no longer needed, they
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are destroyed, thereby freeing up physical resources that

can be redirected to other users.

An institutional or private cloud refers to an inter-

nal data centre of a business or other organization that

is not made available to the public. Private clouds offer

the ability to host applications or virtual machines in a

set of hosts owned by the company. The infrastructure

has to be purchased and managed by the organization;

in this sense, a private cloud is very similar to a grid

[17]. One may argue that the level of abstraction is dif-

ferent, but the idea of dynamic provisioning of institu-

tional resources is the same. Therefore we use the terms

grid and institutional cloud interchangeably.

A public cloud makes a distributed infrastructure

available in a pay-as-you-go manner to the public, the

service being sold as utility computing. This is the term

that describes cloud computing in the traditional main-

stream sense. The idea behind utility computing is to

treat computing resources as a metered service, like

electricity or natural gas. Under this model, a user can

dynamically provision any amount of computing re-

sources from a (cloud) provider on demand and only

pay for what is consumed [28]. Resource consumption

is measured in machine-hours, breaking down to CPU-

hours, bandwidth usage, etc.

We primarily view cloud computing as infrastructure-

as-a-service, offering relatively bare bones systems on

top of which a user or organization needs to deploy and

manage their applications and data [36]. The biggest

challenge in cloud computing is the lack of a standard

or single architectural method which can meet the re-

quirements of an enterprise cloud [35].

4.2 Archiving to a cloud

The iRODS system is already prepared to archive to a

cloud. Its compound resource type makes it easier to

integrate HPSS, Amazon S3, FTP and other types of

resources into iRODS. A compound resource is a class

where the POSIX data access type I/O calls such as

open, read, write, lseek, close, etc are not readily avail-

able. Instead, it uses “put” and “get” calls to transfer

entire files. The compound resource implementation in

iRODS requires a cache class resource to be configured

in the same resource group as the compound resource.

Data stored in the compound resource cannot be ac-

cessed directly but through the cache resource using

the put/get driver functions.

The S3 driver in iRODS was implemented based on

the libs3 C library2. The current S3 protocol does not

support some of the functionalities that are normally

2 http://libs3.ischo.com/index.html

seen in file system type resources. Among the more im-

portant missing features are directory support and re-

name capability. The rename capability is particularly

important since the iRODS server uses it quite often to

move files and directories around such as moving files

to the trash. Currently this functionality is emulated

with a “copy” and “unlink” which naturally is not very

efficient [43].

4.3 Addressing the computational aspects of digital

preservation

The steps of a preservation workflow tend to be com-

putationally expensive. For instance, when migrating

from one XML format to the other, one may insert

an XSLT transformation in the pipeline. XSLT proces-

sors are increasingly optimized, using the kind of opti-

mization techniques found in functional programming

languages and database query languages. For example,

static rewriting of the expression tree to move calcu-

lations out of loops, and lazy pipelined evaluation to

reduce the use of memory for intermediate results, al-

low “early exit” when the processor can evaluate an

expression without a complete evaluation of all subex-

pressions. There are also processors which use tree rep-

resentations that are much more efficient than a gen-

eral purpose Document Object Model (DOM) imple-

mentation, which is a non-optimized cross-platform and

language-independent convention for representing and

interacting with objects in an XML document. How-

ever, even with these optimizations, processing a sin-

gle large document tree can take hours, provided that

the computer has the necessary resources, particularly

a satisfactory amount of physical memory.

XML transformations, while costly, are not the most

expensive operations. Automatic metadata extraction

may involve high-complexity natural language process-

ing tasks such as deep parsing and named entity recog-

nition. The use of these tasks can be prohibitive even

for smaller collections due their computational require-

ments.

It is important to recognize the ad-hoc nature of

these computations. Metadata extraction and migra-

tion are not frequently performed. Small organizations,

or organizations that do not have a considerable bud-

get for investments in information technology, do not

have to maintain the resources permanently to deal

with these operations. As many text mining applica-

tions prove, cloud computing is ideally situated for such

situations.

IRODS offers a distributed execution framework via

micro-services, however, these tasks are typically de-

signed for computationally less demanding applications,
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such as the simple parsing of a document. In a resilient

distributed infrastructure, a more robust method is nec-

essary. MapReduce was developed by Google to this

end in the early 2000s, and the framework was first

published in 2004 [12]. The publication spawned sev-

eral open source efforts to implement the framework.

Hadoop, now a top-level Apache project, was first re-

leased in 2006, and it has become the most popular such

open source implementation [45].

MapReduce focuses on scaling out, using a large

number of low-cost commodity servers instead of a small

number of expensive HPCs. It assumes that failures are

common: a failure is not the exception, but the norm.

Redundancy is a requirement. Exploiting the resources

in the cloud can be problematic for DP, as it requires

persistence and high reliability [39]. In this context, the

MapReduce framework helps. DP in a traditional grid

environment suffers from a number of threats. These

threats include component failures such as media faults,

hardware faults, software faults, communication faults,

network services failures. These faults are assumed as

part of the normal operation in a MapReduce frame-

work, and are addressed at lower level, application de-

velopers do not have to deal with them directly. Redun-

dancy is built-in, with a computation launched at least

three nodes simultanously, and if one result is differ-

ent than the ones on the other two nodes, the subtask

is executed again. Debugging, however, can be a ma-

jor issue. Given the complexity of the task, a gradual

scaling out can help to identify errors. A task could be

launched locally or in a local pseudo-cluster, then in a

single-node cloud instance, then a full-scale launch may

follow. However, if the input collection is inconsistent,

finding out how the problem persists in the output col-

lection is an unresolved challenge.

The basic data structure of MapReduce is key-value

pairs. Keys and values can be arbitrarily complex data

structures. For instance, for a collection of web pages,

the keys can be the URLs and the values are the HTML

content. For a graph, keys can be the node identifiers,

while values are the adjacency lists of those nodes. The

output of the mapper is a sorted list of key-value pairs.

The mapper also commonly performs input format pars-

ing, projection (selecting the relevant fields), and filter-

ing (removing records that are not of interest).

In the reduce step, the master node then takes the

answers to all the sub-problems and combines them

in a way to get the output - the answer to the prob-

lem it was originally trying to solve. As the processing

gets more complex, this complexity is generally man-

ifested by having more MapReduce jobs, rather than

having more complex map and reduce functions. In

other words, a developer thinks about adding more jobs,

rather than increasing the complexity of the jobs.

The MapReduce framework, while hiding the com-

plexity of the underlying architecture, forces the user to

think in terms of map and reduce operations. When it

comes to document processing, it is difficult to divide a

single document to smaller pieces. The unit for the map

operation is therefore a single XML document [47]. This

approach integrates well with document pipelines and

document validation checkpoints modelled by a preser-

vation workflow which allows one to define and design

document processes while producing an abstract repre-

sentation that is independent of the implementation. A

workflow designed for a document is invoked from the

map routine of a MapReduce job, with the identity op-

erator acting as the reduce function. The output is the

transformed document which then may undergo further

processing in subsequent MapReduce jobs.

To implement the above approach, we choose Apache

Hadoop, which is a software framework that supports

data-intensive distributed applications. Hadoop is es-

sentially a MapReduce implementation (i.e., the Map-

Reduce engine) combined with a distributed file system

(HDFS). We were not measuring the scalability of the

software for distributed computing, hence we opted for

Hadoop as stable and widely used tool, and did not

consider other options.

The output of an XML processing pipeline is a col-

lection of XML documents in METS format, as men-

tioned in Section 3.2. Going beyond DP, further au-

tomatic content extraction may be performed at docu-

ment or collection level. Such further processing may be

used to support digital curation (see also Section 4.4).

Indexing and machine learning algorithms are likely

to require a different XML input format. Interfacing

between the document processing pipeline and further

steps can be done with simple XSLT transformations.

4.4 Additional services to facilitate access and reuse

As outlined in section 3.3, full-text indexing and re-

trieval are essential components to enable future access

of digital collections. Cheshire uses the Parallel Virtual

Machine to scale to a distributed environment, which

limits its flexibility and may not work in a cloud envi-

ronment where latencies can be haphazard. Therefore

we suggest using Nutch [8], which relies on the MapRe-

duce framework of Hadoop to index files with Lucene

[18].

The parallel indexing operation in the MapReduce

model works as follows. The data to be indexed is parti-

tioned into segments of approximately equal size. Each
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segment is processed by a mapper task that generates

the key-value pairs for that particular segment, where

the key is an index term and the value is the set of

documents that contain that term. The value may be

coupled with additional information, such as the loca-

tion of the term in the document. In the reduce phase,

each reducer task collects all the pairs for a given key,

thus producing a single index table for that particular

term. Once all the keys are processed, we have the entire

inverted index for the entire collection. Nutch is partic-

ularly well suited for scaling out with a large number of

commodity hardware [30], which is the exact situation

with cloud resources.

As pointed out in section 3.4, another aspect of the

DP area is digital curation which is being increasingly

used for the actions needed to add value to and main-

tain these digital assets over time for current and future

generations of users [6]. Digital curation naturally in-

volves the preservation of collections, and also entails

the semantic and ontological continuity and compara-

bility of the collection content. Document and collection-

level metadata are crucial to support the goals of digital

curation. We anticipate that in the tested framework,

machine learning algorithms can be useful to support

further metadata extraction. This would involve index-

ing the outcome of a document processing pipeline, ei-

ther the full-text documents or the extracted features.

Once indexing is performed, various clustering, classi-

fication, and modelling algorithms can be deployed to

add metadata to individual documents or to the entire

collection.

The natural language processing tools can be in-

tegrated with the MapReduce framework in a similar

fashion to the preservation workflow. Moving beyond

individual documents, a wide range of machine learning

libraries has already been developed for Hadoop, such

as the ones included in Mahout [31], a scalable machine

learning library based on MapReduce. This makes it

easy to develop or extend flexible and transparent data

mining methods for DP.

5 Discussion of the results

5.1 Implementation

The implementation relies on the decoupling of the Map-

Reduce framework from the XML processing pipeline,

and since there are no internal dependencies for the

processes, the workload is naturally parallel. A process

designed in Xeproc is exported via the EMF interface

to Python, and is executed on individual documents

that are mapped out to the nodes in the cloud by a

relatively simple MapReduce driver.

For local experiments, we used a workstation with

24 GB of main memory, one quad-core Intel Xeon E5620

CPU with two logical units in each core and 2 TB

of storage, running in a 64-bit environment. For cloud

computations, we used Amazon Web Services (AWS). It

is possible to run Hadoop on Amazon Elastic Compute

Cloud (EC2) and Amazon Simple Storage Service (S3).

While Amazon Web Services is undoubtedly the market

leader in cloud computing, other providers, including at

least one open source solution, exist. We decided in fa-

vor of AWS due to the maturity of its products.

The Python module requires bootstrapping across

all instances in the cluster. This involves copying the

Xeproc player from S3 to the local drive, then installing

modules needed to run it.

We use two types of Amazon EC2 instances: small

standard instances (m1.small) and large standard in-

stances (m1.large). The former consists of 1.7 GB of

main memory, one EC2 Compute Unit (one virtual core

with one EC2 Compute Unit), 160 GB instance storage

(150 GB plus 10 GB root partition), and the software

architecture is 32-bit. A large instance includes 7.5 GB

of main memory, four EC2 Compute Units (two vir-

tual cores with two EC2 Compute Units each), 850 GB

instance storage, and the platform is 64-bit.

5.2 Document processing pipeline

Demonstrating the capabilities of Xeproc, we use a pro-

cess which recognizes and extracts the table of contents

of a document [14,13]. This pipeline is composed of the

following steps (see also Figure 3):

– Entry-level PDF to XML converter3 for PDF files;

– Ad-hoc XSLT transformations for XML files;

– Page header and footer recognition;

– Text reading order reconstruction and paragraph

segmentation;

– Caption detection;

– Table of contents analysis.

The first steps consist of recognizing and deleting doc-

ument elements which can introduce noise during the

table of contents analysis: page headers and footers are

identified and deleted in order to reduce noise (running

titles); so are captions to eliminate tables of figures as

potential table of contents. The text reading order and

paragraph segmentation step generates a proper con-

tent flow which is used by the table of contents com-

ponent. Finally the table of contents is extracted, and

titles in the document body are marked up as heading

elements (Figure 5).

3 http://sourceforge.net/projects/pdf2xml/
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Fig. 5 An example of an identified table of contents in a
PDF file [13]

Validation checkpoints are associated with each step.

One type of validation aims at validating the step out-

put against an XML Schema. Others perform more spe-

cific validations triggering errors or warnings and using

XSL Transformations (especially XSLT 2.0) or ad hoc

engines. For instance, an XSLT 2.0 validation detects

overlapping paragraphs after the paragraph segmenta-

tion step and triggers a warning which points out some

difficult or unexpected content layout. The user inter-

face allows for visual inspection of the list of errors and

warnings.

5.3 The Dataset

The collection being studied is a collection of doctoral

theses hosted by the German National Library4. At the

4 http://deposit.d-nb.de/index_e.htm

point of downloading the collection, it contained 94,437

theses. The total volume of the PDF files is over 500GB.

The accompanying metadata is in Dublin Core for-

mat, which is a set of elements providing a small and

fundamental group of text elements using only fifteen

fields by which most resources can be described and

cataloged.

The collection is multilingual with approximately 75

% of it being in German, and over 20 % in English. The

presence of other languages is almost negligible.

5.4 The overhead of using a MapReduce framework
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Fig. 6 Comparison of running times on a single local node

On a small subset of a hundred documents, MapRe-
duce performance is close to single-core batch process-

ing (Figure 6). This is probably due to the overhead

of setting up the framework. For larger collection sizes,

MapReduce traces the quad-core performance. This is

expected, since we see three to four map tasks running

simultaneously.

Load balancing is not optimized for the batch pro-

cessor, as it simply divides up the collection to tasks of

approximately equal size. The size, however, does not

correspond well with the actual time spent on computa-

tion. This gives a slight advantage to MapReduce, since

it has a sophisticated mechanism for load balancing.

This is not critical when comparing with the quad-core

performance, as the differences between the finishing

times of individual threads are marginal for four con-

current threads. The differences in running eight pro-

cesses are more significant, the slowest thread finishes

1.6 times slower than the fastest. Hence the eight-thread

performance is not directly comparable with that of

MapReduce.
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5.5 Running time in the cloud
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Fig. 7 Comparison of running times with different collection
sizes

Before we compare the running times of executing a

pipeline locally versus in the cloud, we must note some

changes that are required for scaling out. The default

configuration for the EC2 m1.small and m1.large in-

stances has 1.7 GB main memory with 900 MB swap,

and 7.5 GB main memory with no swap, respectively.

As the memory requirements on the single local node

hinted, this is not sufficient for running several pro-

cesses simultaneously. An m1.small instance runs two

child processes for MapReduce tasks, and an m1.large

instance launches four. To accommodate the occasional

peak memory usage, 4 GB of swap memory was config-

ured for both types of instances. We observed a maxi-

mum of 2.1 GB swap memory used, which is a surprising

result, since local single-node runs saw up to 8 GB of

memory usage for a single Python process.

The document processing pipeline is also demanding

on the CPU, not only on the memory. Since the Python

interface does not comply with the stream interface of

Hadoop, a map task which spawns the Python process

may not be able to send “heartbeat” signals for long

periods of time. These heartbeat signals are required by

the framework, and if they are not received periodically,

the task is considered failed. To avoid this, we removed

the need for these signals. As the Python module always

terminates, a permanent lock-up will not occur. It may

happen that several pipelines require long computations

simultaneously – a larger number of nodes will balance

the load better.

The times shown in Figure 7 do not include the

time needed to launch an instance or a cluster. This

depends on the demand, the type of instances launched,

and the number of instances requested. For a cluster of

m1.large instances the starting time alone can be ten

minutes or more. We focus our attention on the actual

execution time of the document processes. The time and

cost of moving data in and out of the cloud is negligible

compared to the exectution time.

The closest equivalent to our local node is a single

m1.large instance. The running times are marginally

better on the local node for collection size above a hun-

dred documents (75 % and 86 % of the running time

compared to the single quad-core cloud instance). This

is in line with our intuition, as the local node has four

times more main memory and does not have to rely on

swap memory at all. The Hadoop configuration is more

fine-tuned to virtual instances, and that may cause the

better performance.

On small collections, there is little to gain by scaling

to a high number of nodes or processing cores. As the

collection size increases, it makes more and more sense

to use a larger cluster. With a twenty-instance cluster

of m1.large nodes, the running time drops from two

days to just seven hours. Cost, however, becomes an

important aspect in choosing the correct cluster size.

5.6 Cost analysis of computing and storage
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Fig. 8 Comparison of average cost of computations with dif-
ferent collection sizes

The price analysis is based on instance pricing in

the EU West region (Ireland) as of September 2009.

The prices indicated do not include VAT. The pricing

for compute instances does not include a small fixed

charge for using the MapReduce framework, indicating

the cost of using EC2 instances only.

Striking an optimal average price depends largely on

the collection size. Since full hours have to be paid for

partial hours as well, small data sets are the cheapest to
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process on a single or a few m1.small instances (Figure

8).

The scenario is different for larger collections. They

tend to have a minimum average cost in the middle

range. For a thousand documents, the lowest cost is

US$0.0057 per document in clusters of ten or twenty

instances. For ten thousand documents, the lowest av-

erage price is US$0.0037 with a cluster of ten m1.small

instances. This also hints at a trend the larger the col-

lection the lower the average cost per processed object.

Beyond the compute instances, we also look at per-

sistent storage in the cloud as an alternative to local

hosting. Amazon S3 charges US$0.150 per gigabyte per

month for the first fifty terabytes of data. To store

the full collection, it would amount to approximately

US$80.00 per month. This, however, is not the total cost

of storage, as the access requests also cost US$0.01 per

thousand. Depending on the purpose of the collection,

this may prove to be a substantial sum. Public access to

the collection stored in S3 would also need third-party

solutions, involving service level agreements, further in-

creasing the cost.

6 Organizational issues

The cloud, like the grid, is another variant of distributed

computing. A valuable comparison between the cloud

and grid has already been carried out by [7]. Rather

than perform another comparison we feel it more to

the point to try to highlight the factors that need to

be considered when making use of third-party services.

These are as follows:

– The environment in which the application acts on

the data must be recorded. An application that ex-

tracts metadata information or transforms data from

one format to another may behave differently on

different platforms. Although the results may be

within acceptable tolerance it will still be important

to capture the environment (such as the operating

system, the version of the application, etc) to help

users of the data to assess whether observed features

are genuine or an artifact of the processing.

– There is also the critical need to validate each re-

sult from the cloud. To ensure it conforms to the

expected result e.g. reference samples may need to

be run in order to understand that the results are

within tolerance. This is because the preservation

system has no control over the cloud resources which

may change from one day to the next and may in-

troduce a subtle bug that could not be detectible if

there is no validation based on significant properties

of the data using a reference sample.

– An SLA on the quality and level of service must be

agreed. An organisation tasked with digital preser-

vation will have defined quality of service measures

and will need to ensure the third-party service meets

or exceeds those measures. A service level agreement

would contain those quality of service measures as

well as a means to verify they are met. The quality of

service agreement can range from security through

service reliability to performance. The SLA should

also detail how data are to be removed or deleted in

the case of termination of the contract.

– Many cloud providers offer attractive SLAs. An SLA

may specify the levels of availability, serviceability,

performance, operation, or other attributes of the

service. The “level of service” can also be specified

as “target” and “minimum”, which allows users to

be informed what to expect. In the context of dig-

ital curation, if the collection is preserved in the

cloud, the SLA has to explicitly define the persis-

tency of storage. Cloud providers may have funda-

mentally different SLAs, which makes their compar-

ison difficult. An ongoing European Union funded

FP7 project, SLA@SOI, is researching aspects of

multi-level and multi-provider SLAs within service-

oriented infrastructure and cloud computing [9,41].

The project will eventually deliver predictability,

dependability, and transparency in SLA manage-

ment aimed at making it easier to choose a cloud

provider suitable for DP purposes [29].

– As suggested above, beyond the physical threats of

data loss, other challenges in a grid environment

include organizational issues, such as management

failures and economic failures. While these can be

considered at a higher organizational level through

proper preservation policies, with a cloud provider

involved, these policies can be more difficult to en-

force. Economic failures are also a threat to cloud

providers, hence a single provider might prove to be

hazardous for preservation.

7 Conclusion

With a paradigm shift in the making toward a service-

oriented architecture, DP is one of the areas to bene-

fit from this change. Considerations suggest that espe-

cially small organizations should welcome the turn as

an attractive upcoming solution to their related prob-

lems. To test the feasibility of this assumption, we built

a preservation workflow in a cloud processing environ-

ment to show that the process is smoothly running.

The competitive aspects of the new technology, in-

cluding its cost assessments, are too early to address
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but as shown by parallel experiments on a high per-

formance workstation, memory and CPU requirements

of DP are quite considerable and may be beyond reach

for several institutions. As first results by cloud com-

puting suggest, even a single node m1.large instance

has a performance close to that of a decent workstation

which makes running workflows possible for everyone.

Moreover, a single workstation may be more expensive

to rent for a longer term than running the same cal-

culations on a cluster, as shown in the average cost

diagrams. By picking the cloud configuration with the

lowest estimated average cost, bulky DP jobs can be

done at an affordable price and with flexibility beyond

that of fixed resources.

We believe that the architecture outlined in this pa-

per advances the state-of-the-art in DP for the following

reasons:

– The procurement of an expensive server or a grid

can be replaced by service level agreements with the

cloud provider;

– The flexibility is unprecedented in terms of scale and

document process design;

– Ad-hoc peak computations that are typical in doc-

ument processes are easily addressed;

– Persistent storage in the cloud is a viable alternative

to local servers;

– The MapReduce framework enables an easy inte-

gration of various support services of DP, such as

document migration, metadata extraction, natural

language processing, full-text indexing and retrieval,

and data mining.

With the emergence of high-performance comput-

ing instances in the cloud, computations on a massive
scale have become available to technically every organi-

zation. Our future work includes further investigation

into this emergent field with implications for digital li-

braries and digital preservation [46]. We also hope to

extend the scope to alternative computing infrastruc-

ture, such as graphics hardware, which would be able to

accelerate language technology services with speedups

unseen before.
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Darányi, S.: Xml processing in the cloud: Large-scale dig-
ital preservation in small institutions. In: Proceedings of
DataCloud-11, 1st International Workshop on Data In-
tensive Computing in the Clouds in conjunction with the
25th IEEE International Parallel and Distributed Com-
puting Symposium. Anchorage, AK, USA (2011)

48. Witten, I., Don, K., Dewsnip, M., Tablan, V.: Text min-
ing in a digital library. International Journal on Digital
Libraries 4(1), 56–59 (2004)


